Model predictive control on high precision foundries: a new approach for the prediction phase

Authors

  • J. Nieves Universidad de Deusto, DeustoTech Computing-S3Lab
  • I. Santos Universidad de Deusto, DeustoTech Computing-S3Lab
  • P. G. Bringas Universidad de Deusto, DeustoTech Computing-S3Lab

DOI:

https://doi.org/10.3989/revmetalm.1059

Keywords:

Model predictive control, Machine learning, Fault prediction, Data mining, Process optimisation

Abstract


A Model Predictive Control (MPC) is a system which allows us to control a production plant. Thanks to this type of system is possible to make a production that comes close to “zero defects”. In order to achieve its main goal, this kind of systems consists of several phases. One of the most important is the phase that predicts the situation in which the plant is going to be in a given time. Currently, the majority of the research in this field are related to linear MPC, although the process, which the model tries to represent, may not be. Thus, this paper presents several experiments that proof that the forecast phase, usually represented by a single mathematical function, can be represented by machine-learning models.

Downloads

Download data is not yet available.

References

[1] A. Lazaro, I. Serrano, J. P. Oria, y C. de Miguel. Proc. AMC. Coimbra, Portugal, IEEE Standards Office, Cambridge, MA, EE.UU., pp. 653-658.

[2] P. Zhang, Z. Xu, y F. Du, Proc. ICNC, IEEE Computer Society, Los Alamitos, CA, EE.UU., 2008, pp. 545-548.

[3] M. Perzyk y A. Kochanzski, P. I. Mech. Eng. B-J. Eng. 217 (2003) 1.279-1.284.

[4] H. Bhadeshia, ISIJ Int. 39 (1999) 966-1.000.

[5] R. Gonzaga-Cinco y J. Fernández-Carrasquilla, Rev. Metal. Madrid 42 (2006) 91-102.

[6] C. W. Lung y N. H. March, Mechanical Properties of Metals: Atomistic and Fractal Continuum Approaches, Ed. World Scientific Pub Co Inc, Singapur, 1999, pp. 43-110.

[7] M. Morari y J. H. Lee, Comput. Chem. En. 23 (1997) 667-682. http://dx.doi.org/10.1016/S0098-1354(98)00301-9

[8] S.J. Qin y T.A. Badgwell, Prog. Syst. C. 26 (2000) 369-392.

[9] S.J. Wright, Proc. CPC-5, vol. 93, Tahoe, J.C. Kantor, C.E. Garcia, y B. Carnahan (Eds.), American Institute of Chemical Engineers, Nueva York, EE.UU., 1997, pp. 147-155.

[10] M. Morari y J.H. Lee, Proc. CPC-4, 1991, Padre Island, Texas, EE.UU., Y. Arkun, y W. H. Ray (Eds.), Elsevier, Amsterdam, Holanda, 1991, pp. 419-444.

[11] K.R. Muske y J.B. Rawlings, AIChE. J. 2 (1993) 262-287. http://dx.doi.org/10.1002/aic.690390208

[12] B. Froisy. ISA T. 33 (1994) 235-243. http://dx.doi.org/10.1016/0019-0578(94)90095-7

[13] D. W. Clarke, C. Mohtadi y P. S. Tuffs, Automatica 2 (1987) 137-148. http://dx.doi.org/10.1016/0005-1098(87)90087-2

[14] R. Kohavi. Int. Joint Conf. Artif. (1995) 1.137- 1.143.

[15] G. F. Cooper y E. Herskovits, Proc. UAI, Los Angeles, B. D. D'Ambrosio, P. Smets, P. P. Bonissone (Eds.) Morgan Kaufman Publishers Inc., San Francisco, EE.UU. 1991, pp. 86-94.

[16] S. J. Russell y Norvig. Artificial Intelligence: A Modern Approach, Ed. Prentice Hall, Upper Saddle River, NJ, EE.UU., 2003, pp. 126-129.

[17] D. Geiger, M. Goldszmidt, G. Provan, P. Langley y P. Smyth, Mach. Learn. 2 (1997) 131-163.

[18] B. Üstün, W.J. Melssen y L.M.C. Buydens. Anal. Chim. Acta, 595 (2007) 299-309.

[19] L. Breiman. Mach. Learn. 45 (2001) 5-32. [20] P. Larrañaga, J. Sertucha, y R. Suárez, Rev. Metal. Madrid 42 (2006) 244-255.

[21] J. Sertucha, R. Suárez, J. Legazpi, y P. Gacetabeitia, Rev. Metal. Madrid 43 (2007) 188-195.

[22] T. Bayes, Philos. Trans. R. Soc. 53 (1763) 370-418. http://dx.doi.org/10.1098/rstl.1763.0053

[23] E. Castillo, J. M. Gutiérrez y A. S. Hadi, Expert Systems and Probabilistic Network Models. Ed. Springer, New York, EE.UU., 1996, pp. 69-534.

[24] J. Pearl, Handbook of brain theory and neural networks, M. Arbib (Ed), MIT Press, Cambridge, MA, EE.UU., pp. 149-153

[25] E. Fix y J. L. Hodges, Discriminatory analysis: Nonparametric discrimination: Small Sample performance, Technical Report Project 21-49- 004, Report Number 11, USAF School of Aviation Medicine, Randolf Field, Texas, EE.UU., 1952.

[26] C. M. Bishop, Neural Networks for Pattern Recognition, Ed. Oxford University Press, Oxford, UK, 1995, pp. 225-283.

[27] D. Michie y D. J. Spiegelhalter, Machine learning, neural and statistical classification, Ed. Ellis Horwood, Upper Saddle River, NJ, EE.UU., 1994, pp. 84-124.

[28] V. N. Vapnik, The nature of statistical learning theory, Ed. Springer, New York, EE.UU., 1995, pp. 156-167.

[29] T. Peng, W. Zuo y F. He, Knowl. Inf. Sys. 3 (2008) 281-301. http://dx.doi.org/10.1007/s10115-007-0107-1

[30] J. R. Quinlan, Mach. Learn. 1 (1986) 81-106.

[31] L. Breiman, Mach. Learn. 1 (2001) 5-32. http://dx.doi.org/10.1023/A:1010933404324

[32] S.R. Garner, Proc. de la New Zealand Computer Science Research Students Conference, Nueva Zelanda, 1995, pp. 57-64.

[33] Y. K. Penya, P. G. Bringas y A. Zabala, Proc. INDIN-6, Daejon, Corea, 2008, pp. 1.673-1.677.

[34] P. Spirtes, C. Glymour y R. Scheines, Causation, Prediction, and Search, Ed. MIT Press, Cambridge, EE.UU., 2001, pp. 73-156.

[35] U. B. Kjaerulff y A. L. Madsen, Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis. Information Science and Statistics, Ed. Springer, New York, EE.UU., 2008, pp. 241-245.

Downloads

Published

2011-08-30

How to Cite

Nieves, J., Santos, I., & Bringas, P. G. (2011). Model predictive control on high precision foundries: a new approach for the prediction phase. Revista De Metalurgia, 47(4), 341–354. https://doi.org/10.3989/revmetalm.1059

Issue

Section

Articles