Thermal stability of nanostructured iron powder as a function of amount and nature of reinforcement (Nb or NbC)
DOI:
https://doi.org/10.3989/revmetalm.1055Keywords:
Niobium, Mechanical alloying, Microalloyed sintered steels, Thermal stability, Nanostructured powder, Ferritic grain growthAbstract
In structural steels, an effective strategy to succeed in increasing both strength and toughness is the grain refining, like in microalloyed steels. To delay or even inhibit the grain growth there are two basic mechanisms: particle pinning and solute drag. The effect of the presence of small particles of NbC to inhibit the austenitic grain growth is well known. However, it is not so clear which mechanism will be more effective to delay ferritic grain growth. In order to confirm it, nanostructured iron powders reinforced with Nb and NbC have been prepared by mechanical alloying. The main objective of this work is, therefore, to study the thermal stability of the nanostructured powder as a function of the reinforce type (elemental Nb or NbC) and its content.
Downloads
References
[1] B.K. Panigrahi, S. Mishra y S. Sen, Trans. of the Indian Inst. of Metals, 39 (3) (1986) 241-272.
[2] T. Gladman, The Physical Metallurgy of Microalloyed Steels, Ed. Ashgate Publishing with The Institute of Materials, 1997, pp. 19-78.
[3] H. K. D. H. Bhadeshia, Mater. Sci. Technol. 21 (2005) 1.293-1.302.
[4] D. L. Zhang. Prog. Mater. Sci. 49 (2004) 537-560. http://dx.doi.org/10.1016/S0079-6425(03)00034-3
[5] C.C. Koch, O.B. Cabin, C.G. Mclamey y J.O. Scarbough, Appl. Phys. Lett. 43 (1983) 1.017-1.019.
[6] H. J. Fecht, NanoStruct. Mater. 6 (1995) 33-42.
[7] C.C. Koch, NanoStruct. Mater. 9 (1997) 13-22.
[8] J. Eckert, J.C. Holzer, C.E. Krill y W.L. Johnson, J. Mater. Res. 7 (1992) 1.751-1.761.
[9] C.H. Moelle y H. J. Fecht. NanoStruct. Mater. 6 (1995) 421-424.
[10] E. Bonetti, L. del Bianco, L. Pasquín y E. Sampaolesi, NanoStruct. Mater. 12 (1999) 685-688.
[11] C. Zener. Private communication to C.S. Smith. Tran. Amer. Inst. Min. Metall. Engres. 175 (1953) 15-51.
[12] T. Gladman, Proc. of the Royal Society of London, 294, Issue 1438 (1966) 298-309.
[13] K. Lücke y H.P. Stüwe, Recovery and Recrystallization in Metals. Ed. Interscience Publications, 1963, pp. 171-210.
[14] J.W. Cahn, Acta Metall. 10 (1962) 789-798. http://dx.doi.org/10.1016/0001-6160(62)90092-5
[15] D. San Martín, F.G. Caballero, C. Capdevila y C. García de Andrés, Rev. Metal. Madrid 42 (2006) 128-137.
[16] Y.H. Zhao, H.W. Sheng y K. Lu, Acta Mater. 49 (2001) 365-375. http://dx.doi.org/10.1016/S1359-6454(00)00310-4
[17] F. A. Mohamed, Marter. Sci. Eng. A354 (2003) 133-139.
[18] J.C. Rawers, R. Krabbe, D.C. Cook y T.H. Kim, NanoStruct. Mater. 9 (1997) 145-148.
[19] C.R. Hutchinson, H.S. Zurob, C.W. Sinclair, y J.M. Brechet, Scripta Mater. 59 (2008) 635-637. http://dx.doi.org/10.1016/j.scriptamat.2008.05.036
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.