Implications of total content of silicon, aluminium, chromium and formation of thin ferrite films on low ductility at high temperature in non oriented electrical steels

Authors

  • F. Equihua-Guillén Facultad de Ingeniería Mecánica y Electrónica. Universidad Autónoma de Coahuila
  • R. Servín Facultad de Ingeniería Mecánica y Electrónica. Universidad Autónoma de Coahuila
  • J. R. Muzquiz-Riojas Facultad de Ingeniería Mecánica y Electrónica. Universidad Autónoma de Coahuila
  • J. E. Camporedondo-Saucedo Facultad de Ingeniería Mecánica y Electrónica. Universidad Autónoma de Coahuila
  • M. Aguilar-González Centro de investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Saltillo

DOI:

https://doi.org/10.3989/revmetalm.1110

Keywords:

Electrical steel, Ductility loss, Ar3 temperature, Intergranular crack

Abstract


This work shows evidence of the implications of total additions of silicon, aluminium and chromium on low ductility during hot rolling in non-oriented electrical steels. This paper explains the reason of ductility loss at temperatures between 950 - 1000°C in electrical steels which exhibit higher Ar3 transformation temperature than C-Mn and microalloyed steels. The empirical equations to determine Ar3 temperature do not consider silicon and aluminium elements. The results show that high content of silicon, aluminium and residual concentration of chromiun considerably increases Ar3 transformation temperature in non-oriented electrical steels. The low ductility at high temperature occurs between Ae3 and Ar3 transformation temperatures. In addition, the results of this work show evidence of thin ferrite films formed near Ar3 temperature and their implications on ductility loss at high temperature.

Downloads

Download data is not yet available.

References

[1] W.T. Lankford, Metall. Trans. 3 (1972) 1331-1357. http://dx.doi.org/10.1007/BF02643017

[2] A. Peece. J. Nutting and A. Hartley, J. Iron Steel Inst. 164 (1950) 37-43.

[3] T. Koand D. Hanson, J. Iron Sleel Inst. 164 (1950) 51-62.

[4] S. Y. Ogawa,T. B. King and N. J. Grant, Journal of Metals: Trans. Metall. Soc. AIME, 224 (1962) 112-123.

[5] R. A. Reynolds and W. J. McG. Tegart, J. Iron Steel Inst. 200 (1962) 1044-1059.

[6] G. A. Wilber, R. Batra, W. F. Savage and W. J. Childs, Metall. Trans. 6A (1975) 1727-1735.

[7] J. Bellot and M. Gantois, Trans. Iron Steel Inst. Jpn.18 (1978) 536-545.

[8] F. Weinberg, Metall. Trans. 10B (1979) 513-522.

[9] H. G. Suzuki, S. Nishimura and S. Yamaguchi, Trans. Iron Steel Inst. Jpn. 22 (1982)48-56. http://dx.doi.org/10.2355/isijinternational1966.22.48

[10] K. Yasumoto,Y. Maehara, S. Ura and Y. Ohmori, Mater. Sci. Technol. 1 (1985) 111-116.

[11] M. Tacikowski, G. A. Osinkolu and A. Kobylanski, Mater. Sci. Tech. 2 (1986) 154-158.

[12] C. Nagasaki. A. Aizawa and J. Kihara, Trans. Iron Steel Inst. Jpn. 27 (1987) 506-512. http://dx.doi.org/10.2355/isijinternational1966.27.506

[13] H. Kobayashi, ISIJ Int. 31 (1991) 268-273. http://dx.doi.org/10.2355/isijinternational.31.268

[14] Y. Maeharaand K. Kamei, ISIJ Int. 34 (1994) 843-848. http://dx.doi.org/10.2355/isijinternational.34.843

[15] C. Nagasak and J. Kihara, ISIJ Int. 39 (1999) 75-83. http://dx.doi.org/10.2355/isijinternational.39.75

[16] E. Gamsjager, M. Militzer, F. Fazeli J. Svoboda and F. D. Fischer, Comput. Mater. Sci. 37 (2006) 94-100.

[17] K. Yasumoto,Y. Maehara, S. Ura and Y. Ohmori, Mater. Sci. Technol. 1 (1985) 111-116.

[18] S. W. Lee, D. H. Seo and W. Y. Choo, J. Kor. Inst. Met. Mater. 36 (1998) 1966-1973.

[19] P. D. Hodgson, M. R. Hickson and R. K. Gibbs, Scr. Metall. Mater. 40 (1999) 1179-1184.

[20] M. Niikura, M. Fujioka, Y. Adachi, A. Matsukura, T. Yokota, Y. Shirota and Y. Hagiwara, J. Mater. Process. Techol. 117 (2001) 341-346. http://dx.doi.org/10.1016/S0924-0136(01)00800-7

[21] P. J. Hurley and P. D. Hodgson, Mater. Sci. Eng. A 302 (2001) 206-214. http://dx.doi.org/10.1016/S0921-5093(00)01823-2

[22] S. Lee, D. Kwon, Y. K. Lee and O. Kwon, Metall. Trans. A, 26 (1995) 1093-1100. http://dx.doi.org/10.1007/BF02670605

[23] K. Nagai, J. Mater. Process. Techol. 117 (2001) 329-332. http://dx.doi.org/10.1016/S0924-0136(01)00789-0

[24] Z. Q. Sun, W. Y. Yang, J. J. Qi and A. M. Hu, Mater. Sci. Eng. A, 334 (2002) 201-206. http://dx.doi.org/10.1016/S0921-5093(01)01806-8

[25] Y. D. Huang and L. Froyen, J. Mater. Process. Technol. 124 (2002) 216-226.

[26] E. Essadiqi and J. J. Jonas, Metall. Trans. A, 19A (1988) 417-426.

[27] B. Mintz, J. Lewis and J. J. Jonas, Mater. Sci. Tech. 13 (1997) 379-388.

[28] Y. Matsumura and H. Yada, Tetsu-to-Hagané. 69 (1983) 1460-1467.

[29] C. Ouchi and K. Matsumoto, Trans. Iron Steel Inst. Jpn. 22 (1982) 181-189. http://dx.doi.org/10.2355/isijinternational1966.22.181

[30] H. Yada, N. Matsuzu, K. Nakajima, K. Watanabe, and H. Tokita, Trans. Iron Steel Inst. Jpn. 23 (1983) 100-109. http://dx.doi.org/10.2355/isijinternational1966.23.100

[31] H. G. Suzuki, S. Nishimura and J. Imamura, Trans. Iron Steel Inst. Jpn. 24 (1984) 169-177. http://dx.doi.org/10.2355/isijinternational1966.24.169

[32] S. T. Hong, Proc. of the 2nd Workshop on The Development of High Performance Structural Steels for 21th Century, Vol. 2 POSCO Pohang (1999) C-1.

[33] E. O. García-Sánchez, E. A. Treviño-Luna, A. Salinas-Rodríguez y L. A. Leduc-Lezama, Rev. Metal. Madrid. 43 (2007) 266-271.

[34] G. I. S. L. Cardoso, S. Yue, Proc. AIME Mech. 31 (1989) 585-589.

[35] J. Y. Fu, I. García, S. Pytel and A. J. De Ardo, Processing Microstructure and Properties of HSLA Steels. Metallurgical Society of AIME, Warrendale, PA. USA, 27, 1988, pp. 1811-1823.

[36] A. Cowley, R. Abushosha, B. Mintz, Mater. Sci. Techl. 14 (1998) 1145-1153.

[37] B. Mintz, R. Abushosha, and M. Shaker, Mater. Sci. Techl. 9 (1993) 907-914.

[38] H. Yada, C. M. Li and H. Yamagata, ISIJ Int., 40 (2000) 200-206. http://dx.doi.org/10.2355/isijinternational.40.200

[39] I. Tamura, H. Sekine, T. Tanaka, C. Ouchi, Journal of the Iron and Steel Institute, Butterworths, London, 1988, pp. 162-169.

[40] P. V. Morr, A. J. Bdttger and E. J. Mittemeijer, Journal of Thermal Analysis and Calorimetry. 64 (2001) 905-911. http://dx.doi.org/10.1023/A:1011514727891

[41] R. C. Reed and H. K. D. H. Bhadeshia, Mater. Sci. Tech. 8 (1992) 421-435.

[42] K. Ushioda, O. Akisue, K. Koyama, Y. T. Hayashida, Sheet Steels, R. Pradhan and I. Gupta (Eds.), 1992, pp. 261-286.

[43] E. O. García Sánchez. Thesis PhD, CINVESTAV Saltillo, México 2006.

Downloads

Published

2011-10-30

How to Cite

Equihua-Guillén, F., Servín, R., Muzquiz-Riojas, J. R., Camporedondo-Saucedo, J. E., & Aguilar-González, M. (2011). Implications of total content of silicon, aluminium, chromium and formation of thin ferrite films on low ductility at high temperature in non oriented electrical steels. Revista De Metalurgia, 47(5), 381–389. https://doi.org/10.3989/revmetalm.1110

Issue

Section

Articles