Effect of the strain rate in the dynamic recrystallization of ETP copper during its hot compression with descending temperatures

Authors

  • G. Torrente Departamento de Mecánica, Universidad Simón Bolívar
  • M. Torres Departamento de Mecánica, Universidad Simón Bolívar
  • L. Sanoja Departamento de Mecánica, Universidad Simón Bolívar

DOI:

https://doi.org/10.3989/revmetalm.1143

Keywords:

Electrolytic pure copper, Multiple peaks dynamic recrystallization, Damped cosine Avrami model, KJAM, Zener, Hollomon

Abstract


The main purpose of this project is to establish the effect of strain rate in the dynamic recrystallization of an ETP copper during its hot deformation with descending temperature. For this, there were made some tests of hot compression until true deformations close to one, with four strain rates while the temperature was descending. The tests that were made to the two lowest strain rates, showed a multiple peaks dynamic recrystallization with a rise of the tension instead it reaches the steady state, maybe due a continuous decline of the temperature.With the increase of rate the rest of the tests showed simple peak recrystallization and recovering respectively. The experimental results were compared with the results of a simulation based on the Damped Cosine Avrami Model. The simulation produced results closed to those measured during the multiple peaks dynamic recrystallization. These suggest that the application of this Model may be extended to multiple peaks dynamic recrystallization processes with changeable temperature.

Downloads

Download data is not yet available.

References

[1] P. Follansbee y U. Kocks, Acta Metall. 36 (1988) 81-93. http://dx.doi.org/10.1016/0001-6160(88)90030-2

[2] V. García, J.M. Cabrera, L. Riera y J.M. Prado, Proceeding of Euromat 2000, Vol. 2, 2000, pp. 1.357-1.362.

[3] V. García, M. Wahabi, J.M. Cabrera, L. Riera y J.M. Prado, Rev. Metal. Madrid 37 (2001) 177-183.

[4] M. Avrami, J. Chem. Phys. 7 (1939) 1.103-1.112.

[5] M. Luton y C. Sellar, Acta Metall. 17 (1969) 1.033-1.043.

[6] A. Kolmogorov, Izv Akad, Nauk SSSR, Ser. Matem. 3 (1937) 355-359.

[7] W. Johnson y R. Mehl, Trans. AIME 135 (1939) 416-442.

[8] M. Wahabi, Tesis Doctoral, Dpto. de Ciencia de Materiales e Ingeniería Metalúrgica, Universidad Politécnica de Cataluña, 2002. [9] I. Rieiro, M. Larrea, V. Gutiérrez, V. Triviño, M. Carsí y O. Ruano, Rev. Metal. Madrid 46 Nº Extraord. (2010) 115-127.

[10] Y. Prasad y K. Rao,Mat. Sci. Eng. A 317 (2004) 335-341. http://dx.doi.org/10.1016/j.msea.2004.03.007

[11] L. Blaz, T. Sakai y J. Jonas, Metal. Science, 17 (1983) 609-616. http://dx.doi.org/10.1179/030634583790420448

[12] A. Manonukul y F. Dunne, Acta Mater. 47 (1999) 4.339-4.354.

[13] U. Kocks, J. Eng. Mater-T (Trans. ASME series H) 98 (1976) 76-85.

[14] A. Tanner y D. Mcdowell, Int. J. Plasticity 15 (1999) 375-399. http://dx.doi.org/10.1016/S0749-6419(98)00061-8

[15] A. Jena, M. Chaturvedi, Phase Transformations in Materials, (Ed.) Prentice Hall, 1992, pp. 243-247.

[16] V. García, Tesis Doctoral, Dpto. de Ciencia de Materiales e Ingeniería Metalúrgica, Universidad Politécnica de Cataluña, 2004. [17] V. García, J. M. Cabrera, J. M. Prado, Mater. Sci. Forum, 550 (2007) 565-570.

[18] J.M. Cabrera, A. Omar y J. Prack, Rev. Metal. Madrid, 33 (1997) 143-152.

[19] A. Omar, A. Chenaoui, R. Dkiouak y J.M. Prado, Rev. Metal. Madrid 42 (2006) 103-113.

[20] B. Derby, Acta Metall. 39(1991) 955-962. [21] G. Dieter, Metalurgia Mecánica, (Ed.) McGraw- Hill, 1967, pp. 510-519.

[22] Z. Zeng, S. Jonsson, H. Jorgen y Y. Zhang, Mater. Design. 30 (2009) 1.939-1.943.

[23] A. Rollett, D. Srolovitz, R. Doherty y M. Anderson, Acta Metall. 31 (1989) 627-439. http://dx.doi.org/10.1016/0001-6160(89)90247-2

[24] R. Cahn y P. Haasen, Physical Metallurgy (1996) 2.452-2.453.

[25] J.M. Cabrera, Tesis Doctoral, Dpto. de Ciencia de Materiales e Ingeniería Metalúrgica, Universidad Politécnica de Cataluña, 1995.

[26] ASTM Standard E-209-00, Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates, Vol. 03.01, ASTM International, 2010.

[27] ASTM E 3-11, Standard Guide for Preparation of Metallographic Specimens, Vol. 03.01, ASTM International, 2010.

[28] ASTM E 9-98a, Standard Test Methods of Tension Testing of Metallic Materials at room temperature, Vol. 03-01 ASTM Standards, 2010.

[29] J. Ruan y B. Bhushan, J. Appl. Phys. 76 (1994) 8.117-8.120.

[30] J. Peterson y B. Marshal, Technical Note 3657. National Advisory Committee for Aeronautics NACA, 1956.

[31] ASTM E 112-88, Standard Test Method for Determining the Average Grain Size, Vol. 02.01 ASTM Standards, 1992.

[32] S. Sakui, S. Sakai y K. Takeishi, Trans. ISIJ. 17 (1977) 718-725.

[33] F. Montheillet y J. Jonas, Encyclopedia of Applied Physics, 16 (1996) 205-225.

Downloads

Published

2011-12-30

How to Cite

Torrente, G., Torres, M., & Sanoja, L. (2011). Effect of the strain rate in the dynamic recrystallization of ETP copper during its hot compression with descending temperatures. Revista De Metalurgia, 47(6), 485–496. https://doi.org/10.3989/revmetalm.1143

Issue

Section

Articles