Characterization of solid wastes from two different hot-dip galvanizing processes

Authors

  • P. Delvasto Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Caracas
  • J. A. Casal-Ramos Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Caracas
  • O. González-Jordán Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Caracas
  • N. Z. Durán-Rodríguez Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Caracas
  • J. R. Domínguez Laboratorio de Espectroscopía Atómica, Universidad Simón Bolívar, Caracas
  • P. Moncada Laboratorio de Química Instrumental, Universidad Simón Bolívar, Caracas

DOI:

https://doi.org/10.3989/revmetalm.1131

Keywords:

haracterization, Wastes, Hot-dip galvanizing, Zinc ash, Zinc dust

Abstract


Zinc dust and zinc ash from hot-dip galvanizing industries located in Venezuela were characterized using atomic spectroscopy, scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Dust was formed during the high-pressure drying process of the galvanized pieces, in a plant that uses a steel kettle to hold the molten zinc. Ash identified as “A” came from the same plant as the dust, while ash identified as “B” came from a hot-dip galvanizing plant which use a ceramic lined galvanizing furnace. Dust contained 98 wt % Zn, in metallic form. Both ash samples contained: Zn and ZnO, while Zn5(OH)8Cl2—H2O and ZnCl2 were only found in ash “B”. Globally, ash “A” and ash “B” contain 71 and 75 wt % Zn, respectively.

Downloads

Download data is not yet available.

References

[1] N. Durán, Tesis de Licenciatura en Ingeniería de Materiales, Departamento de Ciencias de los Materiales, Universidad Simón Bolívar, 2010.

[2] X. Castells, Reciclaje de Residuos Industriales, Ed. Díaz de Santos S. A., Madrid, España, 2000, pp. 1-2, 15-18, 27-29, 45-48.

[3] C. Escudero, Tesis Doctoral, Departament d’Enginyeria Química, Agrària i Tecnologia Agroalimentaria, Universitat de Girona, 2009.

[4] L. Korb y D. Olson, Corrosion, ASM Handbook, Volume 13, ASM International, 4ta. Edición, EE.UU., 1992, pp. 959-974.

[5] N. Birks, G.Meier y F. Petit, Introduction to High-Temperature Oxidation of Metals, Cambridge University Press, 2da. Edición, Inglaterra, 2006, pp. 23.

[6] B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons Ltd., Chichester, Inglaterra, 2004, pp. 26-27, 96-99.

[7] M. Saheer, M. Alam, M. Seok Jon y O. Yang, Electrochim. Acta 53 (2008) 7869-7874. http://dx.doi.org/10.1016/j.electacta.2008.05.055

[8] M. Yeganeh, J. Alloy Compd. 491 (2010) 420-422.

[9] B. M. Keyes, L. M. Gedvilas, X. Li y T. J. Coutts, J. Cryst. Growth 281 (2005) 297-302. http://dx.doi.org/10.1016/j.jcrysgro.2005.04.053

[10] C. Pholnak, C. Sirisathitkul y D. J. Harding, J. Phys. Chem. Solids. 72 (2011) 817-823. http://dx.doi.org/10.1016/j.jpcs.2011.04.005

[11] O. Kammori, N. Yamaguchi y K. Sato, Jpn. Analyst. 16 -10 (1967)1.050-1.055.

[12] G. Zhang, S. Yu, Y. Yang, W. Jiang, S. Zhang y B. Huang, J. Cryst. Growth 312 (2010) 1.866-1.871.

[13] P. Navarro, C. Vargas, R. Álvarez y F. J. Alguacil, Rev. Metal. Madrid 41 (2005) 12-20.

[14] J. O. Nriagu, Zinc in the environment. Part I: Ecological Cycling, John Wiley & Sons Ltd., Burlington, Canadá, 1980, pp. 4, 33-35, 39-45, 52-57, 337-343, 347-349.

[15] I. Cakmak, J. Trace. Elem. Med. Bio, 23 (2009) 281-289. http://dx.doi.org/10.1016/j.jtemb.2009.05.002 PMid:19747624

[16] M. Salgueiro, M. Zubillaga, A. Lysionek, M. Sarabia, R. Caro, T. De Paoli, A. Hager, E. Ettlin, R. Weill y J. Boccio, Nutrition 16-9 (2000) 762-766. http://dx.doi.org/10.1016/S0899-9007(00)00379-8

Downloads

Published

2012-02-28

How to Cite

Delvasto, P., Casal-Ramos, J. A., González-Jordán, O., Durán-Rodríguez, N. Z., Domínguez, J. R., & Moncada, P. (2012). Characterization of solid wastes from two different hot-dip galvanizing processes. Revista De Metalurgia, 48(1), 34–44. https://doi.org/10.3989/revmetalm.1131

Issue

Section

Articles