New phenomenological and differential model for hot working of metallic polycrystalline materials

Authors

  • J. Castellanos Dpto. de Matemáticas, Universidad de Castilla - La Mancha
  • J. Muñoz Dpto. de Matemáticas, Universidad de Castilla - La Mancha
  • V. Gutiérrez Dpto. de Matemáticas, Universidad de Castilla - La Mancha
  • I. Rieiro Dpto. de Matemáticas UCLM Didáctica de las Matemáticas
  • O. A. Ruano Dpto. de Metalurgia Física, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)
  • M. Carsí Dpto. de Metalurgia Física, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)

DOI:

https://doi.org/10.3989/revmetalm.1239

Keywords:

Hot working, Modelization, High nitrogen steel, Dynamic recovery, Dynamic recrystallization

Abstract


This paper presents a new phenomenological and differential model (that use differential equations) to predict the flow stress of a metallic polycrystalline material under hot working. The model, called MCC, depends on six parameters and uses two internal variables to consider the strain hardening, dynamic recovery and dynamic recrystallization processes that occur under hot working. The experimental validation of the MCC model has been carried out by means of stress-strain curves from torsion tests at high temperature (900 ºC a 1200 ºC) and moderate high strain rate (0.005 s-1 to 5 s-1) in a high nitrogen steel. The results reveal the very good agreement between experimental and predicted stresses. Furthermore, the Garofalo a-parameter and the strain to reach 50 % of recrystallized volume fraction have been employed as a control check being a first step to the physical interpretation of variables and parameters of the MCC model.

Downloads

Download data is not yet available.

References

[1] M. E. Kassner y M. T. Pérez-Prado, Prog. Mater. Sci. 45 (2000) 1-102. http://dx.doi.org/10.1016/S0079-6425(99)00006-7

[2] I. Rieiro, M. Carsí y F. Peñalba, Rev. Metal. Madrid 32 (1996) 321-328.

[3] I. Rieiro, A. Martínez y M. Carsí, Rev. Metal. Madrid 34 (1998) 335-347.

[4] J. Castellanos, I. Rieiro, M. Carsí y O. A. Ruano, J. Mater. Sci. 45 (2010) 5.522-5.527. http://dx.doi.org/10.1007/s10853-010-4610-5

[5] A. K. Miller y O. D. Sherby, Acta Metall. Mater. 26 (1978) 289-304. http://dx.doi.org/10.1016/0001-6160(78)90129-3

[6] G. A. Henshall y A. K. Miller, Acta Metall. Mater. 37 (1989) 2.693-2.704.

[7] M. F. Horstemeyer y D. J. Bammann, Int. J. Plasticity 26 (2010) 1.310-1.334. http://dx.doi.org/10.1016/j.ijplas.2009.04.005

[8] J. Castellanos, I. Rieiro, M. El Mehtedi, M. Carsí y O. A. Ruano, Int. J. Mater. Res.101 (2010) 787-793. http://dx.doi.org/10.3139/146.110344

[9] J. Castellanos, I. Rieiro, M. Carsí, J. Muñoz, M. El Mehtedi y O. A. Ruano, Mater. Sci. Eng. A 517 (2009) 191-196. http://dx.doi.org/10.1016/j.msea.2009.03.042

[10] I. Rieiro, M. Carsí y O. A. Ruano, Mater. Sci. Technol. 25 (2009) 995-1.002. http://dx.doi.org/10.1179/174328408X369429

[11] L. Anand, Int. J. Plasticity 1 (1985) 213-231. http://dx.doi.org/10.1016/0749-6419(85)90004-X

[12] S.B. Brown y K.H. Kin, Int. J. Plasticity 5 (1989) 95-130. http://dx.doi.org/10.1016/0749-6419(89)90025-9

[13] M. Zhou y M. P. Clode, Mech. Mater. 27 (1998) 63-76. http://dx.doi.org/10.1016/S0167-6636(97)00035-5

[14] Y. Estrin y H. Mecking, Acta Metall. 32 (1984) 57-70. http://dx.doi.org/10.1016/0001-6160(84)90202-5

[15] M. El Wahabi, J. M. Cabrera y J. M. Prado, Mater. Sci. Eng. A 343 (2003) 116-125. http://dx.doi.org/10.1016/S0921-5093(02)00357-X

[16] J. J. Jonas, X. Quelennec, L. Jiang y E. Martin, Acta Mater. 57 (2009) 2.748-2.756. http://dx.doi.org/10.1016/j.actamat.2009.02.033

[17] S. Serajzadeh, ISIJ Int. 43 (2003) 1.050- 1.055. http://dx.doi.org/10.2355/isijinternational.43.1050

[18] M. El Wahabi, L. Gavard, F. Montheillet, J. M. Cabrera y J. M. Prado, Acta Mater. 53 (2005) 4.605-4.612.

[19] J. Nocedal y S. J. Wright, Numerical Optimization, Ed. Springer-Verlag, New York, EE.UU, 1999, pp. 556-558.

[20] S. Ta'asan, Introduction to Shape Design and Optimal Control, Lecture Notes on Optimization, Von Karman Institute, 1997, pp. 1-19.

[21] K. Schittkowski, Numerical Data Fitting in Dynamical Systems, Ed. Kluwer Academic Publishers, Dordrecht, Holanda, 2002, pp. 115- 118.

[22] M. El Mehtedi, Tesis Doctoral, Facultad de Ingeniería, Università Politecnica delle Marche, Ancona, 2009.

[23] H. J. McQueen y C. A. C. Imbert, J. Alloy Compd. 378 (2004) 35-43. http://dx.doi.org/10.1016/j.jallcom.2003.10.067

[24] I. A. Maksoud, H. Ahmed y J. Rödel, Mater. Sci. Eng. A 504 (2009) 40-48. http://dx.doi.org/10.1016/j.msea.2008.10.033

[25] M. Shaban y B. Eghbali, Mater. Sci. Eng. A 527 (2010) 4.320-4.325.

[26] C. A .C. Imbert y H. J. McQueen, Mat. Sci. Eng. A 313 (2001) 104-116. http://dx.doi.org/10.1016/S0921-5093(01)00974-1

Downloads

Published

2012-10-30

How to Cite

Castellanos, J., Muñoz, J., Gutiérrez, V., Rieiro, I., Ruano, O. A., & Carsí, M. (2012). New phenomenological and differential model for hot working of metallic polycrystalline materials. Revista De Metalurgia, 48(5), 367–376. https://doi.org/10.3989/revmetalm.1239

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >>