The corrosion behaviour of nanograined metals and alloys


  • P. Herrasti Universidad Autónoma de Madrid. Facultad de Ciencias. Departamento de Química-Física
  • C. Ponce de León Electrochemical Engineering Laboratory, National Centre for Advanced Tribology, School of Engineering Sciences, University of Southampton
  • F. C. Walsh Electrochemical Engineering Laboratory, National Centre for Advanced Tribology, School of Engineering Sciences, University of Southampton



Alloys, Corrosion, Metals, Nanocrystals


There has been considerable interest in the properties of nanocrystalline materials over the last decade. Such materials include metals and alloys with a crystal size within the order of 1 to 100 nm. The interest arises due to the substantial differences in electrical, optical and magnetic properties and also due to their high adsorption capability and chemical reactivity compared to their larger grained counterparts. In this paper, the corrosion of nanocrystalline metals and alloys is investigated and compared to the corrosion of microcrystalline materials having a similar composition. The focus is on the corrosion of nickel, copper, cobalt and iron alloys. Key aspects of different corrosion behaviour such grain boundaries and size are identified.


Download data is not yet available.


[1] A. Gromov and V. Vereshchagin, J. Eur. Ceram. Soc. 24 (2004) 2879-2884.

[2] T. X. Fan, S. K. Chow and D. Zhang, Progr. Mater. Sci. 54 (2009) 542-659.

[3] A. Dasari, Z. Z. Yu and Y. W. Mai, Polymer 50 (2009) 4112-4121.

[4] R. Gangopadhyay and A. De, Chem. Mater. 12 (2000) 608-622.

[5] J. G. Gonzalez-Rodriguez, M. A. Lucio-Garcıa, M. E. Nicho, R. Cruz-Silva, M. Casales, and E. Valenzuela, J. Power Sourc. 168 (2007) 184-190.

[6] C. Ponce de León, D. V. Bavykin and F. C. Walsh, Electrochem. Commun. 8 (2006) 1655-1660.

[7] C. G. Granqvist, Sol. Energ. Mater. Sol. Cell 91 (2007) 1529-1598.

[8] D. V. Bavykin and F. C. Walsh, Titanate and Titania Nanotubes; Synthesis, Properties and Applications, Royal Society of Chemisty, Cambridge, UK, 2010.

[9] M. Conte, P. P. Prosini, and S. Passerini, Mater. Sci. Eng. B 108 (2004) 2-8.

[10] S. Hamdani, C. Longuet, D. Perrin, J. M. Lopez- Cuesta and F. Ganachaud, Polym. Degrad. Stabil. 94 (2009) 465-495.

[11] G. A. Jimenez and S. C. Jana, Compos. Appl. Sci. Manuf. 38 (2007) 983-993.

[12] Y. Yun, Z. Dong, V. N. Shanov, A. Doepke, W. R. Heineman, H. B. Halsall, A. Bhattacharya, D. K. Y. Wong and M. J. Schulz, Sensor Actuat. B Chem. 133 (2008) 208-212.

[13] G. A. Rivas, M. D. Rubianes, M. L. Pedano, N. F. Ferreyra, G. Luque and S. A. Miscoria, Electroanalysis 19 (2007) 823–831.

[14] V. Thavasi, G. Singh and S. Ramakrishna, Energ. Environ. Sci. 1 (2008) 205-221.

[15] F. Cheng, Y. Su, J. Liang, Z. Tao and J. Chen, Chem. Mater. 22 (2010) 898-905.

[16] Nanomedicine. National Horizon Scanning Unit Emerging Technology Bulletin (2007). HealthPACT Secretariat Department of Health and Ageing, February 2007. Accessed 20 September 2011.

[17] Nanotechnology and nanoscience: economic aspects (2011) The Institute of International Economy Accessed 20 September 2011.

[18] United States National Nanotechnology Initiative. Accessed 20 September 2011.

[19] R. Baan, K. Straif, Y. Grosse, B. Secretan, F. El Ghissassi and V. Cogliano, Lancet. Oncol. 7 (2006) 295-296.

[20] D. V. Bavikyn, J. M. Freidrich, A. A. Lapkin and F. C. Walsh, Chem. Mater. 18 (2006) 1124-1129.

[21] S. Banerjee, T. Hemraj-Benny and S. S. Wong, Adv. Mater. 17 (2005) 17-29.

[22] R. Birringer, Mater. Sci. Eng. 117 (1989) 33-43.

[23] G. Palumbo, S. J. Thorpe and K. T. Aust, Scripta Metall. Mater. 24 (1990) 1347-1350.

[24] Y. Zhou, U. Erb, K. T. Aust and G. Palumbo, Scripta Mater. 48 (2003) 825-830.

[25] O. Elkedim, Electrochemical Corrosion Behaviour of Nanocrystalline Materials in Eftekhari A, (ed) Nanostructured materials in Electrochemistry Wiley-VCH Weinheim Germany, 2008, pp. 291–317.

[26] L. Wang, J. Zhang, Y. Gao, Q. Xue, L. Hua and T. Xu, Scripta Mater. 55 (2006) 657-660.

[27] W. A. Badawy, K. M. Ismail and A. M. Fathi, Electrochim Acta 50 (2005) 3603-3608.

[28] W. A. Badawy, F. M. Al-Kharafi and J. R. Al- Ajmi, J. Appl. Electrochem. 30 (2000) 693-704.

[29] S. Wang, R. Rofagha, P. H. Roberge and U. Erb, Proceedings of the Symposium on Nanstructured Materials in Electrochemistry Electrochemical Society 95, 1995, pp. 244-255.

[30] P. Yong, Z. Yi-Chun, Z. Zhao-feng, H. Yong-li, L. Yan-guo and S. Chang-Qing, Transactions of Nonferrous Metals Society of China 17 (2007) 1225-1229.

[31] R. Rofagha, S. J. Splinter, U. Erb and N. S. McIntyre, Nanostruct. Mater. 4 (1994) 69-78.

[32] F. Gonzalez, A. M. Brennenstuhl, G. Palumbo, U. Erb and P. C. Lichtenberger, Mater. Sci. Forum. 225 (1996) 831.

[33] R. Mishra and R. Balasubramaniam, Corros. Sci 46 (2004) 3019-3029.

[34] I. Roy, H. W. Yang, L. Dinh, I. Lund, J. C. Earthman and F. A. Mohamed, Scripta Mater. 59 (2008) 305-308.

[35] J. A. Wharton, R. C. Barik, G. Kear, R. J. K. Wood, K. R. Stokes and F. C. Walsh, Corros. Sci. 47 (2005) 3336-3367.

[36] S. K. Ghosh, G. K. Dey, R. O. Dusane and A. K. Grover, J. Alloy. Compd. 426 (2006) 235-243.

[37] R. Rofagha, U. Erb, D. Ostrander, G. Palumbo and K. T. Aust, Nanostruct Mater 2 (1993) 1-10.

[38] S. J Splinter, R. Rofagha, N. S. MacIntyre and U. Erb, Surf Interface Anal. 24 (1996) 181-186.<181::AID-SIA92>3.0.CO;2-N

[39] Y. Gao, Z. J. Zheng, M. Zhu and C. P. Luo CP, Mat. Sci. Eng. 381 (2004) 98-103.

[40] K. R. Sriraman, S. Ganesh Sundara Rama and S. K. Seshadri, Mat. Sci. Eng. 460 (2007) 39-45.

[41] M. Clarke and R. G. Elbourne, Electrochim. Acta 16 (1971) 1949-1954.

[42] T. P. Hoar, M. Talerman and E. Trad, Nature Physical Science 244 (1973) 41-42.

[43] S. A. M. Refaey, F. Taha and T. H. A. Hasanin, Electrochim. Acta 51 (2006) 2942-2948.

[44] S. H. Kim, K. T. Aust, U. Erb, F. Gonzalez and G. Palumbo, Scripta Mater. 48 (2003) 1379-1384.

[45] A. Aledresse and A. Alfantazi, J. Mater. Sci. 39 (2004) 1523-1526.

[46] H. Jung and A. Alfantazi, Electrochim. Acta 51 (2006) 1806-1814.

[47] L. Wang, Y. Lin, Z. Zeng, W. Liu, Q. Xuea, L. Hu and J. Zhang, Electrochim. Acta 52 (2007) 4342-4350.

[48] J. J. Steppan, J. A. Roth, L. C. Hall, D. A. Jeannotte and S. P. Carbone, J. Electrochem. Soc. 134 (1987) 175-190.

[49] M. R. Bahbanan, U. Erb and G. Palumbo, Nanostructured Metals for Enhanced Performance of LIGA Components in:S. M. Mukhopadhyay, et al. (eds.), Processing an Manufacturing Fifth Global Symposium, TMS, Warrendale, PA, John Wiley and Sons Ltd, 2004 p. 307.

[50] A. Robertson, U. Erb and G. Palumbo, Nanostruct. Mater. 12 (1999) 1035-1040.

[51] G. Palumbo, J. McCrea and U. Erb, Applications of Electrodeposited Nanostructures in: Nalwa HS (Ed.), Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishing, Stevenson Ranch, CA, 2004, p. 89.

[52] B. Yu, P. Woo and U. Erb, Scripta Mater. 56 (2007) 353-356.

[53] A. Vinogradov, T. Mimaki, S. Hashimoto and R. Valiev, Scripta Mater. 41 (1999) 319-326.

[54] H. Miyamoto, K. Harada, T. Mimaki, A. Vinogradov and S. Hashimoto, Corros. Sci. 50 (2008) 1215-1220.

[55] A. Barbucci, G. Farnè, P. Matteazzi, R. Riccieri and G. Cerisola, Corros. Sci. 41 (1999) 463-475.

[56] V. Afshari and C. H. Dehghanian, Corros. Sci. 51 (2009) 1844-1849.

[57] O. Elkedim, H. S. Cao and D. Guay, J. Mater. Process. Tech. 121 (2002) 383-389.

[58] A. Q. Lu., Y. Zhang, Y. Li, G. Liu, Q. H. Zang and C. M. Liu, Acta Metall. Sin. 19 (2006) 183-189.

[59] X. Y. Wang and D. Y. Li, Electrochim Acta 47 (2002) 3939-3947.

[60] A. Balyanov, J. Kutnyakova, N. A. Amirkhanova, V. V. Stolyarov, R. Z. Valiev, X. Z.Liao, Y. H. Zhao, Y. B. Jiang, H. F. Xu, T. C. Lowe and Y. T. Zhu, Scripta Mater. 51 (2004) 225-229.

[61] Kh. M. S. Youssef, C. C. Koch and P. S. Fedkiw, Corros. Sci. 46 (2004) 51-64.

[62] D. Kuroda, M. Niinomi, M. Morigana, Y. Kato and T. Yashiro, Mat. Sci. Eng. A 243 (1998) 244-249.

[63] W. G. Kim and H. C. Choe, Transactions of Nonferrous Metals Society of China 19 (2009) 1005-1008.

[64] C. A. C. Souza, J. E. May, L. Bolfarini, S. E. Kuri, M. F. de Oliveira and C. S. Kiminami, J. Non-Cryst. Solids 284 (2001) 99-104.

[65] C. A. C. Souza, M. F. de Oliveira, J. E. May,W. J. R. Botta, N. A. Mariano, S. E. Kuri and C. S. Kiminami, J. Non-Cryst. Solids 273 (2000) 282-288.

[66] C. A. C. Souza and C. S. Kiminami, J. Non- Cryst. Solids 219 (1997) 155-159.

[67] C. A. C. Souza, S. E. Kuri, F. S. Politti, J. E. May and C. S. Kiminami, J. Non-Cryst. Solids 247 (1999) 69-73.

[68] K. Peng, Y. Tang, L. Zhou, J. Tang, F. Xu and Y. Du, Phys. B Condens. Matter. 366 (2005) 110-115.

[69] A. Inoue and A. Makino, Nanostruct. Mater 9 (1997) 403-412.

[70] H. Habazaki, T. Sato, A. Kwashima, K. Asami and K. Hashimoto, Mat. Sci. Eng. A 304 (2001) 696-700.

[71] U. Koster, D. Zander, A. Triwikantoro, A. Rudiger and L. Jastrow, ScriptaMater. 44 (2001) 1649-1654.

[72] D. Zander, U. Köster, N. Eliaz and D. Eliezer, Mat. Sci. Eng. A 294 (2000) 112-115.

[73] V. Cremaschi, I. Avram, T. Pérez and H. Sirkin, Scripta Mater. 46 (2002) 95-100.

[74] W. Zeiger, M. Schneider, D. Scharnweber and H. Worch, Nanostruct. Mater. 6 (1995) 1013-1016.




How to Cite

Herrasti, P., Ponce de León, C., & Walsh, F. C. (2012). The corrosion behaviour of nanograined metals and alloys. Revista De Metalurgia, 48(5), 377–394.