Corrosion behavior of Fe3Al intermetallics with addition of lithium, cerium and nickel in 2.5 % SO2+N2 at 900 °C


  • A. Luna-Ramírez Instituto de Investigaciones Eléctricas
  • J. Porcayo-Calderón Instituto de Investigaciones Eléctricas
  • A. Martínez-Villafane CIMAV
  • J. G. González-Rodríguez Universidad Autónoma del Estado de Morelos, CIICAP
  • J. G. Chacón-Nava CIMAV



Iron aluminides, Alloy addition, High temperature corrosion, Oxide scale, Oxide/Alloy interface


The corrosion behavior of Fe3Al-type intermetallic alloys with addition of 1 at. % cerium, lithium and nickel at high temperature has been studied. The various alloys were exposed to an environment composed of 2.5 % SO2+N2 at 900 °C for 48 h. For all the intermetallic tested, the corrosion kinetics showed a parabolic behavior. The alloy, which showed less corrosion rate, was the Fe3AlNi alloy, being Fe3AlCeLi the alloy with the highest corrosion rate. For the various alloys, energy dispersive X-ray spectroscopy analysis, EDS, on the developed scale only detected aluminum, oxygen, and traces of iron and cerium, suggesting the formation of alumina as main component. The intermetallic alloys showed oxide cracking and spalling. The intermetallic chemical composition played an important role in defining the oxide scale morphology and the extent of damage.


Download data is not yet available.


[1] Metals Handbook Ninth Edition, Vol . 13, Corrosion, High-Temperature Corrosion in Gases, ASM International, 1987, p. 97.

[2] C. G. McKamey, J. H. Devan, P. F. Tortorelli and V. K. Sikka, J. Mater. Res. 6 (1991) 1779-1805.

[3] V. K. Sikka, C.G. McKamey, C.R. Howell and R. H. Baldwin, Fabrication and Mechanical Properties of Fe 3Al -Based Aluminides, ORNLRTM-11465, Oak Ridge National Laboratory, Oak Ridge, TN, 1990. PMCid:1792270

[4] K. Natesan and P.F. Tortorelli, Proc. Int. Symp. on Nickel and Iron Alumin ides Processing, Properties, and Applications, Cincinnati, OH, 1996, ASM International, Materials Park, OH, 1997, pp. 265-287.

[5] J.H. Devan, H.S. Hsu and M. Howell, ORNL, report TM-11176, Oak Ridge, TN, 1989.

[6] K. Natesan, Mater. High Temp.14 (1997) 71-79.

[7] K. N. Strafford and R. Manifold, Oxid. Met. 5 (1972) 85-112.

[8] P. C. Patnaik an d W.W. Sm eltzer, Oxid. Met. 23 (1985) 53-75.

[9] P. J. Smith and W.W. Smeltzer, Oxid. Met. 28 (1987) 291-297.

[10] S. Mrow ec, Oxid. Met. 44 (1995) 177-209.

[11] P.C. Patnaik and W.W. Smeltzer, J. Electrochem. Soc. 132 (1985) 1226-1232.

[12] V. L. Hill and H. S. Mayer, High Temperature Corrosion in Energy Systems, Edby M. F. Rothman. The Metallurgical Society of the AIME,1985, pp. 29-52.

[13] P. F. Tortorelli and K. Natesan, Mater. Sci. Eng. A 258 (1998) 115-125.

[14] K. Natesan and R. N. Johnson, Proceedings of the 2nd International Conf. on Heat-Resistant Materials, K. Natesan, P. Ganesan, G. Lai (Eds.) Gatlinburg, Tennessee, 1995, pp. 591-600.

[15] P. F. Tortorelli and J.H. Devan, Chapter 3 in: G. Welsch, P. D. Desai (Eds.), Oxidation and Corrosión of Intermetallic Alloys, Metals Information Analysis Center, Purdue University, West Lafayettem, IN, 1996. PMid:8661903

[16] P. F. Tortorelli and P. S. Bishop, Environmental Effects on Advanced Materials, R.H. Jhones and R.E. Ricker (Eds.), The Minerals, Metals and Materials Society, Warrendale, P.A., 1991, p. 91.

[17] M. Salazar, A. Albiter, G. Rosas and R. Pérez, Mater. Sci. Eng. A 351 (2003) 154-159.

[18] P. F. Tortorelli and J. H. Devan, Mater. Sci. Eng. A 153 (1992) 573-577.

[19] W. Kai , S. H. Lee, D. L. Chiang and J. P. Chu, Mater. Sci. Eng. A 258 (1998) 146-152.

[20] W. Kai, M.T. Chang, C.D. Liu, D.L. Chiang and J. P. Chu, Mater. Sci. Eng. A 329-331 (2002) 734-744.

[21] W. Kai and R.T. Huang, Oxid. Met. (1997) 48-59.

[22] W. Kai, J. P. Chu, R. T. Huang and P. Y. Lee, Mater. Sci. Eng. A 239-240 (1997) 859-870.

[23] F.H. Stott, K.T. Chuah and L. B. Bradley, Oxidation of Intermetallics, Eds. H. J. Grabke, M. Schutze, 1997, pp. 221-232.

[24] K. Natesan, Mater. Sci. Eng. A 258 (1998) 126-134.

[25] J. H. Devan and P. F. Tortorelli, Corros. Sci. 35 (1993) 1065-1071.

[26] J. J. Ramos-Hernández, Tesis de Maestría, Facultad de Química-UNAM, 2009.

[27] K. Natesan, Prepared for Environmental Degradations of High-Temperature Materials, ANL, Argonne, Illinois, 1980, pp. 60-69.

[28] A.K. Misra, Thermodynamic Analysis of Compatibility of Several Reinforcement Materials With FeAl Alloys. NASA Contractor Report 4172, 1988.

[29] INS NIST-JANAF Thermochemical Tables, Fourth Edition, National Institute of Standards and Technology, 1998.

[30] D.P. Whittle, High Temp. Corros. Ed. R. A. Rapp, NACE-6, Houston,1981.

[31] W. H. Lee and R. Y. Lin, Mater. Chem. Phys. 58 (1999) 231-242.

[32] D. Monceau and B. Pieraggi, Oxid. Met. 50 (1998) 477-493.

[33] P.L. Hemmings and R. A. Perkins, FP-539 Research Project 716-1. Prepared by EPRI, Palo Alto Cal. Dec. 1977.

[34] K. Natesan, K. Klug, D. Renusgh, B. W. Veal and M. Grimsditch, ANL/FE-96/01, pp. 1-20.

[35] B. A. Pint, Mater. Sci. Forum. 369-372 (2001) 411-418.

[36] M. A. Montealegre and J. L. González-Carrasco, Intermetallics 11 (2003) 169-175.

[37] D.B. Lee, G. Y. Kim and J. G. Kim, Mater. Sci. Eng. A 339 (2003) 109-114.

[38] M.W. Brumm and H. Grabke, J. Corros. Sci. 33 (1992) 1667-1675.

[39] P.F. Tortorelli and J. H. Devan, Oxidation and Corrosion of Intermetallic Alloys, Chapter 3. Ed. Welsh and P. D. Desai, 1996, pp. 266-321.




How to Cite

Luna-Ramírez, A., Porcayo-Calderón, J., Martínez-Villafane, A., González-Rodríguez, J. G., & Chacón-Nava, J. G. (2012). Corrosion behavior of Fe3Al intermetallics with addition of lithium, cerium and nickel in 2.5 % SO2+N2 at 900 °C. Revista De Metalurgia, 48(6), 405–413.




Most read articles by the same author(s)