Effects of surface modification of thin wires of AISI 302 stainless steel by electrolytic plasma on its mechanical properties

Authors

  • A. Gallegos Departamento de Ingeniería de Materiales (DIMAT), Facultad de Ingeniería, Universidad de Concepción
  • C. Camurri Departamento de Ingeniería de Materiales (DIMAT), Facultad de Ingeniería, Universidad de Concepción
  • C. Carrasco Departamento de Ingeniería de Materiales (DIMAT), Facultad de Ingeniería, Universidad de Concepción
  • F. Soldera Departamento de Ciencia de Materiales, Universidad de Saarland

DOI:

https://doi.org/10.3989/revmetalm.1152

Keywords:

Electrolytic plasma technology (EPT), Contact glow discharge electrolysis (CGDE), Surface nanostructuration, Nanograins, Rupture strength, Plasma electrolytic oxidation (PEO)

Abstract


In this work different tests using electrolytic plasma (EP) on thin wires of stainless steel AISI 302 in an inert solution were performed. Tensile tests were carried out in order to measure changes in the mechanical strength of the samples; moreover, both the morphological and microstructural changes also were evaluated. It was found that after 10 s of the application of EP, the samples surface was uniformly covered by nodules-like and craters similar to those found in the melting and cooling periods of EP. The results show a significant surface grain refinement, leading to crystalline arrangements with sizes less than 200 nm and also an increase in the samples tensile strength of at least 57 % respect to steel base.

Downloads

Download data is not yet available.

References

[1] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski y A. Yanagida, Manufacturing Technology 57 (2008) 716-735.

[2] L. Peraldo-Bicelli, B. Bozzini, C. Mele y L. D'Urzo, Int. J. Electrochem. Sci. 3 (2008) 356-408.

[3] X. Sauvage, A. Chbihi y X. Quelennec, J. Phys. Conference Series 240 (2010) 012003. http://dx.doi.org/10.1088/1742-6596/240/1/012003

[4] A. Rezaee, A. Najafizadeh, A. Kermanpur y M. Moallemi, Mater. Design. 32 (2011) 4.437-4.442. http://dx.doi.org/10.1016/j.matdes.2011.03.065

[5] M. Multigner, E. Frutos, J. L. González-Carrasco, J. A. Jiménez, P. Marín y J. Ibáñez, Mater. Sci. Eng. C-Bio S, 29 (2009) 1.357-1.360.

[6] X.Y. Wang y D.Y. Li, Electrochim. Acta 47 (2002) 3.939-3.947.

[7] X.Y. Wang y D.Y. Li, Wear 255 (2003) 836-845. http://dx.doi.org/10.1016/S0043-1648(03)00055-3

[8] L. Wang y D.Y. Li, Surf. Coat. Tech. 167 (2003) 188-196. http://dx.doi.org/10.1016/S0257-8972(02)00894-0

[9] H. Yun-wei, D. Bo, Z. Cheng, J. Yi-rning y L. Jin, J. Iron Steel Res. Int. 16 (2009) 8-72.

[10] X.H. Chen, J. Lu, L. Lu y K. Lu, Scripta Mater. 52 (2005) 1.039-1.044. http://dx.doi.org/10.1016/j.scriptamat.2004.09.008

[11] M. Ya, Y. Xing, F. Dai, K. Lu y J. Lu, Surf. Coat. Tech. 168 (2003) 148-155. http://dx.doi.org/10.1016/S0257-8972(03)00254-8

[12] C.T. Kwok, F.T. Cheng, H.C. Man y W.H. Ding, Mater. Lett. 60 (2006) 2.419-2.422. http://dx.doi.org/10.1016/j.matlet.2006.01.053

[13] S. Barriuso, M. Lieblich, M. Multigner, I. Etxeberria, A. Alberdi y J.L. González-Carrasco, Wear 270 (2011) 634-639. http://dx.doi.org/10.1016/j.wear.2011.01.024

[14] D. Bedorf y S.G. Mayr, Scripta Mater. 57 (2007) 853-856. http://dx.doi.org/10.1016/j.scriptamat.2007.06.059

[15] C. Cui, J. Hu, Y. Liu, K. Gao y Z. Guo, Appl. Surf. Sci. 254 (2008) 6.779-6.782.

[16] P. Gupta, G. Tenhundfeld, E.O. Daigle y D. Ryabkov, Surf. Coat. Tech. 201 (2007) 8.746-8.760. http://dx.doi.org/10.1016/j.surfcoat.2006.11.023

[17] H. H. Kellogg, J. Electrochem. Soc. 97 (1950) 133. http://dx.doi.org/10.1149/1.2777980

[18] A. Hickling y M. D. Ingram, Trans. Faraday Soc. 60 (1964) 783. http://dx.doi.org/10.1039/tf9646000783

[19] D.I. Slovetskii y S. D. Terent`ev, High Energ. Chem., 37 (2003) 310. http://dx.doi.org/10.1023/A:1025752813422

[20] C. W. M. P. Sillen, E. Barendrecht, L .J. J. Janssen y S.J. D. van Stralen, Int. J. Hydrog. Energ. 7 (1982) 577. http://dx.doi.org/10.1016/0360-3199(82)90038-6

[21] E.V. Parfenov, A. L.Yerokhin y A. Matthews, Surf. Coat. Tech. 201 (2007) 8.661-8.670.

[22] A.I. Maximov y A.V. Khlustova, Surf. Coat. Tech. 201 (2007) 8.782-8.788.

[23] E.I. Meletis, X. Nie, F.L. Wang y J.C. Jiang, Surf. Coat. Tech. 150 (2002) 246-256. http://dx.doi.org/10.1016/S0257-8972(01)01521-3

[24] T. Paulmier, J. M. Bell y P.M. Fredericks, Thin. Solid. Films. 515 (2007) 2.926-2.934.

[25] G. Sundararajan y L. Rama Krishna, Surf. Coat. Tech. 167 (2003) 269–277. http://dx.doi.org/10.1016/S0257-8972(02)00918-0

[26] J. Gao, A. Wang, Y. Li, Y. Fu, J. Wu, Youdi Wang y Yujing Wang, React. Funct. Polym. 68 (2008) 1.377-1.383. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.06.018

[27] Q. Lu, J. Yu y J. Gao, J. Hazard Mater. B136 (2006) 526-531. http://dx.doi.org/10.1016/j.jhazmat.2005.11.001 PMid:16600477

Downloads

Published

2012-12-30

How to Cite

Gallegos, A., Camurri, C., Carrasco, C., & Soldera, F. (2012). Effects of surface modification of thin wires of AISI 302 stainless steel by electrolytic plasma on its mechanical properties. Revista De Metalurgia, 48(6), 459–466. https://doi.org/10.3989/revmetalm.1152

Issue

Section

Articles