Microbiologically influenced corrosion evaluation on brass (UNS C68700, UNS C443) and AISI 316 stainless steel
DOI:
https://doi.org/10.3989/revmetalm.014Keywords:
AISI 316, Admiralty brass, Aluminum brass, Electrochemical techniques, MIC, Sulfate reducing bacteriaAbstract
Microorganisms may play an important role in the corrosion process and generate conditions which affect the rate and/or the mechanism of deterioration. They become visible by the formation of biofilms: clusters of microorganisms and extracellular polymers. These biofilms affect not only the durability of the material, but also reduce the heat transfer. The present work studied the growth of aerobic and anaerobic heterotrophic microorganisms and sulfate reducing bacteria on aluminum brass (UNS C68700), admiralty brass (UNS C443) and stainless steel AISI 316 in exposure experiments held in the Bay of Montevideo (Uruguay). The influence of the biofilm growth on the corrosion behavior was studied by electrochemical techniques: polarization curves and Electrochemical Impedance Spectroscopy (EIS). The selection of the most suitable material for the exposure conditions is discussed and hypotheses of the corrosion mechanism are presented. Although stainless steel AISI 316 presented the lowest corrosion rate it showed localized deterioration.
Downloads
References
Armstrong, R.D. (1986). Impedance plane display for an electrode with diffusion restricted to a thin layer. J. Electroanal. Chem. 198 (1), 177–180. http://dx.doi.org/10.1016/0022-0728(86)90034-3
ASTM Standard G3-13 (2013). Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing. ASTM International, Philadelphia, 2013.
Cottis, R.A. (2010). Electrochemical Methods, en: Cottis, R.A., Graham, M.J., Lindsay, R., Lyon, S.B., Richardson, J.A., Scantlebury, J.D., Stott, H. (Eds). Shreir's Corrosion. Elsevier B.V., Amsterdam, pp. 1341–1373.
Cristiani, P. (2005). Solutions to fouling in power station condensers. Appl. Therm. Eng. 25 (16), 2630–2640. http://dx.doi.org/10.1016/j.applthermaleng.2004.11.029
de Romero, M.F., Duque, Z., de Rinc.n, O.T., P.rez, O. Araujo, I. (2003). Estudio de la teor.a de despolarización catádica con permeación de hidrógeno y la bacteria Desulfovibrio desulfuricans. Rev. Metal. 39 (Extra), 182–187.
Faires, V.M., Simmang, C.M. (1982). Termodin.mica. Ed. UTEHA., 6. Edición, México, pp. 234–261.
Gómez de Saravia, S.G., Guiamet, P.S., Videla, H.A. (2003). Prevención y protección de los efectos de la biocorrosión y el biofouling con mínimo impacto ambiental. Rev. Metal. 39 (Extra), 49–54. http://dx.doi.org/10.3989/revmetalm.2003.v39.iExtra.1096
IMM Servicio Laboratorio de Calidad Ambiental, (2011). Estudio de la calidad de agua, sedimento y biota del Río de la Plata. Evaluación de línea de base. Informe Anual -2011.
Javaherdashti, R. (2008). Microbiologically Influenced Corrosion: An Engineering Insight. Springer-Verlag, London, pp. 29–66.
Kosec, T., Merl, D.K. Milosev, I. (2008). Impedance and XPS study of benzotriazole films formed on copper, copperzinc alloys and zinc in chloride solution. Corros. Sci. 50 (7),1987–1997. http://dx.doi.org/10.1016/j.corsci.2008.04.016
Lasia, A. (1999). Electrochemical Impedance Spectroscopy andIts Applications, Modern Aspects of Electrochemistry, Vol. 32, Conway, B.E., Bockris, J., White, R. (Eds). Kluwer Academic/Plenum Publishers, New York, pp. 143–248.
Little, B.J., Lee, J.S. (2007). Microbiologically Influenced Corrosion. Wiley-Interscience, Hoboken, New Jersey, USA, pp. 1–22. http://dx.doi.org/10.1002/9780470112458.ch1
Little, B. J., Wagner P. (1997). Myths Related to microbiologically Influenced Corrosion. Mater. Performance 36 (6), pp. 40–44.
Liu, H., Xu, L. Zeng, J. (2000). Role of corrosion products in biofilms in microbiologically induced corrosion of carbon steel. Brit. Corros. J. 35 (2), 131–135. http://dx.doi.org/10.1179/000705900101501155
Ohanian, M., D.az, V., Corengia, M., Zinola, C.F. (2011). Estudio de corrosión galvánica en pares latón/acero inoxidable y latón/fundición de hierro. Rev. Metal. 47 (4), 319–328. http://dx.doi.org/10.3989/revmetalm.1047
Orazem, M.E., Tribollet, B. (2008a). Electrochemical Impedance Spectroscopy, John Wiley & Sons, Hoboken, New Jersey, USA, pp. 61–72. http://dx.doi.org/10.1002/9780470381588.ch4
Orazem, M.E., Tribollet, B. (2008b). Electrochemical Impedance Spectroscopy, John Wiley & Sons, Hoboken, New Jersey, USA, pp. 183–210. http://dx.doi.org/10.1002/9780470381588.ch11
Oya San, N., Nazir, H., D.nmez, G. (2012). Evaluation of microbiologically influenced corrosion inhibition on Ni-Co alloy coatings by Aeromonas salmonicida and Clavibacter michiganensis. Corros. Sci. 65, 113–118. http://dx.doi.org/10.1016/j.corsci.2012.08.009
Polo, J.L., Bastidas, J.M. (2000). Líneas de transmisión: su utilización en la interpretación de las medidas de impedancia en los estudios de corrosión. Rev. Metal. 36, 357–365. http://dx.doi.org/10.3989/revmetalm.2000.v36.i5.586
Roberge, P.R. (1999). Handbook of Corrosion Engineering. McGraw Hill, New York, USA, pp. 1072–1074.
Russi, P., Pianzzola, M.J., Menes, J., Corengia, M., Diaz, V., Ohanian, M. (2012). Influencia microbiológica sobre la corrosión: ensayos sobre materiales de interés tecnológico realizados en la Bahía de Montevideo. V Encuentro Regional y XXVI Congreso Interamericano de Ing. Química, Montevideo, Uruguay.
Starosvetsky, J., Starosvetsky, D., Pakroy, B., Hilel, T., Armon, R. (2008). Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling. Corros. Sci. 50 (2), 540–547. http://dx.doi.org/10.1016/j.corsci.2007.07.008
Stott, J.F.D. (1993). What progress in the understanding of microbially induced corrosion has been made in the last 25 years? A personal viewpoint. Corros. Sci. 35 (1–4), 667–673. http://dx.doi.org/10.1016/0010-938X(93)90202-R
Stott, J.F.D. (2010). Corrosion in Microbial Environments, en: Cottis, R.A., Graham, M.J., Lindsay, R., Lyon, S.B., Richardson, J.A., Scantlebury, J.D., Stott, H. (Eds). Shreir's Corrosion. Elsevier B.V., Amsterdam, pp. 1169–1190.
Stott J., Skerry B., King R. (1988). Laboratory Evaluation of Materials for Resistance to Anaerobic Corrosion by Sulfate-Reducing Bacteria: Philosophy and Practical Design, en Francis, P.E, Lee, T.S. (Eds.). The Use of Synthetic Environments for Corrosion Testing, ASTM STP 970, American Society for Testing and Materials, Philadelphia, pp. 98–111.
Tanner, R.S. (1989). Monitoring sulfate-reducing bacteria: comparison of enumeration media. J. Microbiol. Methods 10 (2), 83–90. http://dx.doi.org/10.1016/0167-7012(89)90004-3
Videla, H.A. (1996). Manual of Biocorrosion, CRC Press, Boca Raton, FL, p. 241.
Videla, H.A., Salvarezza, R.C. (1984). Introducción a la Corrosión Microbiológica. Librer.a Agropecuaria, Buenos Aires, p. 83.
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.