Laser ablation of polytetrafluoroethylene (PTFE) coatings applied on EN AW-5251 substrates
DOI:
https://doi.org/10.3989/revmetalm.027Keywords:
Coating removal, Laser ablation, PTFE coating, Teflon removalAbstract
Currently the most common used methods for removing PTFE rich coatings on metal substrates are: grinding, pyrolysis, chemical processes or a combination of these. While effective, all present serious difficulties. In this paper the use of laser ablation to remove PTFE rich coatings, which have previously been applied to sheets of aluminum magnesium alloy EN AW-5251 H34, is proposed. For this purpose the values of the yield strength, tensile strength, percent elongation, impact energy retained and hardness are analyzed. Equally, the grain size distribution at the microstructural level, the ASTM average grain size and distribution of constituent particles have been evaluated. Measurements were performed to three successive stages of application and laser coating removal. Moreover, the previous set of properties have been determined for the same substrates and stages but using pyrolysis to remove the coating. Comparison of the results shows that the removal by laser ablation does not cause any reduction in the properties of the substrates and may become an industrial alternative to traditional disposal procedures.
Downloads
References
Arthur, J., Bowman, R., Straw, R. (2008). Robotic laser coating removal system. Final Report, Environmental Security Technology Certification Program, Air Force Research Laboratory, Ohio, USA.
ASTM E-112 (2010). Standard test methods for determining average grain size. ASTM International, USA.
Barletta, M., Gisario, A., Taglaferri, V. (2006). Advance in paint stripping from aluminium substrates. J. Mater. Process. Tech. 173 (2), 232–239. http://dx.doi.org/10.1016/j.jmatprotec.2005.11.029
Coutouly, J.F., Deprez, P., Breaban, F., Longuemard, J.P. (2009). Optimisation of a paint coating ablation process by CO2 TEA laser: Thermal field modelling and real-time monitoring of the process. J. Mater. Process. Tech. 209 (17), 5730–5735. http://dx.doi.org/10.1016/j.jmatprotec.2009.06.001
Drobny, J. (2001). Effects of heat, radiation, and environment on fluoropolymers, technology of fluoropolymers. CRC Press, Boca Ratón, Florida, USA, pp. 171–182.
Drobny, J. (2006). Fluorplastic. Rapra Technology Limited, Shropshire, Reino Unido.
Duarte, J.P., Peças, P. (1998). Limpieza con láser de excímeros de papéis e pergaminos com lama. Rev. Metal. 34, 101–102. http://dx.doi.org/10.3989/revmetalm.1998.v34.i2.669
Flores, T., Ponce, L., Moreno, B., Arronte, M., Fernándaz, M.,García, C. (1998). Nd:YAG laser in art works restoration. Rev. Metal. 34, 98–100. http://dx.doi.org/10.3989/revmetalm.1998.v34.i2.668
Freiwald, D., Peebles, H., Case, R. (1998). Industrial laser–based coatings removal systems. Proc. SPIE 3343, 814–820. http://dx.doi.org/10.1117/12.321608
George, S.R., Leraas, J.A., Langford, S.C., Dickinson, J.T. (2009). Interaction of 157-nm excimer laser radiation with fluorocarbon polymers. Appl. Surf. Sci. 255 (24), 9558–9561. http://dx.doi.org/10.1016/j.apsusc.2009.04.090
Guerrero, G. (2013). Análisis comparativo de los procesos de eliminación de los recubrimientos antiadherentes fluoropoliméricos en superficies metálicas entres tecnologías láser y pirolíticas. Tesis Doctoral. Universidad de Málaga, Málaga, España.
Head, J.D., Niedzielski, J.P. (1991). Laser paint stripping. Wright Laboratory, Air Force Materiel Command, Ohio, USA.
Humphreys, F.J., Hatherl, M. (1995). Recrystallization and Related Annealing Phenomena. Elseiver Science, Oxford, Reino Unido.
Klingenberg, M.L., Naguy, D.A., Naguy, T.A., Straw, R.J., Joseph, C., Mongelli, G.A., Nelson, G.C., Denny, S.L., Arthur, J.J. (2007). Transitioning laser technology to support air force depot transformation needs. Surf. Coat. Tech. 202 (1), 45–57. http://dx.doi.org/10.1016/j.surfcoat.2007.04.056
Klingenberg, M.L., Valencia, J., Price, G., Adams, J.R., Blair, T.P. (2010). Naval application of laser ablation paint removal. Technology. Final Report, Navy Metalworking Center, USA.
Lopez, A.J., Rivas, T., Lamas, J., Ramil, A., Yañez, A. (2010). Optimisation of laser removal of biological crusts in granites. Appl. Phys. A. 100 (3), 733–739. http://dx.doi.org/10.1007/s00339-010-5652-x
Madhukhar, Y.K., Mullick, S., Nath, A.K. (2013). Development of a water-jet assisted laser paint removal process. Appl. Surf. Sci. 286, 192–205. http://dx.doi.org/10.1016/j.apsusc.2013.09.046
Marimuthu, S., Camara, A.M., Whitehead, D., Mativenga, P., Li, L. (2010). Laser removal of TiN coatings from WC micro-tools and in process monitoring. Opt. Laser. Technol. 42 (8), 1233–1239. http://dx.doi.org/10.1016/j.optlastec.2010.03.016
Mateo, M.P., Nicolas, G., Piñon, V., Ramil, A., Yañez, A. (2005). Laser cleaning: an alterenative method for removing oilspill fuel residues. Appl. Surf. Sci. 247 (1–4), 333–339. http://dx.doi.org/10.1016/j.apsusc.2005.01.086
McKeen, L.W. (2006). Florinated coatings and finishes handbook. William Andrews, New York, USA.
Miller, J.C., Haglund, R.F. (1998). Laser ablation and desorption. Academic Press, San Diego, USA.
Mongelli, G., Marqusee, J., Pellerin, C. (2005). Portable handheld laser small area supplemental coatings removal system. Final Report, Headquarters Air Force Materiel Command Depot Modernization and Logistics, Ohio, USA.
Oliver, W.C., Pharr, G.M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (6), 1564–1583. http://dx.doi.org/10.1557/JMR.1992.1564
Olkhov, Y.A., Allayarov, S.R., Tolstopyatov, E.M., Grakovich, P.N., Kalinin, L.A., Dobrovollskii, Y.A., Dixon, D.A. (2010). The effect of continuous CO2 laser radiation on the thermal and molecular–topological properties of polytetrafluoroethylene. High. Energy Chem. 44 (1), 63–74. http://dx.doi.org/10.1134/S0018143910010108
Pantelakis, Sp.G., Haidemenopoulos, G.N. (1998). Effect of novel paint removal processes on the fatigue behavior of aluminum alloy 2024. Surf. Coat. Tech. 106 (2–3), 198–204. http://dx.doi.org/10.1016/S0257-8972(98)00526-X
Pantelakis, Sp.G., Kermanidis, Th.B., Haidemenopoulus, G.N. (1996). Mechanical behavior of 2024 Al alloy specimen subjected to paint stripping by laser radiation and plasma etching. Theor. Appl. Fract. Mec. 25 (2), 139–146. http://dx.doi.org/10.1016/0167-8442(96)00016-X
Prinsloo, F.J., Van Heerden, S.P., Ronander, E. (2007). Efficient TEA CO2-laser-based coating removal system. Proc. SPIE 6346, 63462Q1–63426Q8.
Reznicková, A., Chaloupka, A., Heitz, J., Kolská, J., Švorcik, V. (2011). Surface properties of polymers treated with F2 laser. Surf. Interface Anal. 44 (3), 296–300. http://dx.doi.org/10.1002/sia.3801
Riva, D.A., Pezzetti, F. (1997). Process for removing fluorocarbon resin-based coatings. Patent US5679202.
Schmidt, M., Li, L., Spencer, J., Key, P. (1999). A comparative study of the effects of laser wavelength on laser removal of chlorinated rubber. Appl. Surf. Sci. 138–139, 418–423. http://dx.doi.org/10.1016/S0169-4332(98)00579-0
Schmidt, M., Li, L., Spencer, J., Key, P. (2000). Ablation of a chlorinated rubber polymer and TiO2 ceramic mixture with a Nd:YAG laser. Appl. Surf. Sci. 154–155, 53–59. http://dx.doi.org/10.1016/S0169-4332(99)00374-8
Schmidt, M., Li, L., Spencer, J. (2003). An investigation into the feasibility and characteristics of using a 2.5 kW high power diode laser for paint stripping. J. Mater. Process. Tech. 138 (1–3), 109–115. http://dx.doi.org/10.1016/S0924-0136(03)00057-8
Schuöcker, G.D., Bielak, R. (2007). Laser ablation and competitive technologies in paint stripping of heavy anticorrosion coatings. Proc. SPIE 6346, 34633–34633.
UNE 38347 (2004). Aluminio y aleaciones de aluminio para forja. Serie 5000. EN-AW5251, EN-AW AlMg2. AENOR, España.
UNE-EN ISO 2808 (2007). Pinturas y barnices. Determinación del espesor de película. AENOR, España.
UNE-EN ISO 6892-1 (2005). Materiales metálicos. Ensayos de tracción. Parte 1 Ensayos a temperatura ambiente. AENOR, España.
UNE-EN ISO 148-1 (2009). Materiales metálicos. Ensayo de flexión por choque con péndulo Charpy. Parte 1: Método de ensayo. AENOR, España.
UNE-EN ISO 6507-1 (2006). Materiales metálicos. Ensayo de dureza Vickers. Parte 1: Método de ensayo. AENOR, España.
Wolf, K., Krincher, R., Ermalovich, J. (2009). Laser strip: a portable hand-held laser stripping device for reducing VOC, toxic and particulate emissions, Institute for Research and Technical Assistance, I.R.T.A., USA.
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.