Investigation of mechanical and structural characteristics of platinum and palladium at high temperatures
DOI:
https://doi.org/10.3989/revmetalm.038Keywords:
Annealing, Creep, Deformation, Metals, Tensile testAbstract
In order to broaden future application of products based on platinum and palladium a comparative analysis of their high-temperature mechanical properties was performed. Platinum and palladium are of great importance and are widely used in chemical industry, electronics, for making laboratory dishes, to name a few. Mechanical properties of pure metals, such as: tensile strength, creep rate and rupture time were investigated using universal testing machine for tensile testing of materials. Microstructure of samples was investigated by optical microscopy. Based on obtained results it can be concluded that the platinum, compared to palladium, is superior for high-temperature applications.
Downloads
References
Biggs, T., Taylor, S.S., van der Lingen, E. (2005). The hardening of platinum alloys for potential jewellery application. Platinum Met. Rev. 49 (1), 2–15. http://dx.doi.org/10.1595/147106705X24409
Bliznakov, S., Vukmirovic, M., Sutter, E., Adzic, R. (2011). Electrodeposition of palladium nanowires and nanorods on carbon nanoparticles. Maced. J. Chem. Chem. Eng. 30 (1), 19–27.
Cagin, T., Dereli, G., Uludogan, M., Tomak, M. (1999). Thermal and mechanical properties of some fcc transition metals. Phys. Rev. B: Condens. Matter. 59, 3468–3473. http://dx.doi.org/10.1103/PhysRevB.59.3468
Desforges, A., Backov, R., Deleuze, H., Mondain-Monval, O. (2005). Generation of Palladium Nanoparticles within Macrocellular Polymeric Supports: Application to Heterogeneous Catalysis of the Suzuki-Miyaura Coupling Reaction. Adv. Funct. Mater. 15 (10), 1689–1695. http://dx.doi.org/10.1002/adfm.200500146
Edwards, J.K., Hutchings, G.J. (2008). Palladium and Gold-Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angew. Chem. Int. Edit. 47 (48), 9192–9198. http://dx.doi.org/10.1002/anie.200802818 PMid:18798185
Fischer, B. (1992). Reduction of Platinum Corrosion in Molten Glass. Platinum Met. Rev. 36 (1), 14–25.
Funabiki, M., Yamada, T., Kayano, K. (1991). Auto exhaust catalysts. Catal. Today 10 (1), 33–43. http://dx.doi.org/10.1016/0920-5861(91)80072-H
Gavin, H. (2010). Platinum group metals research froma global perspective. Platinum Met. Rev. 54 (3), 166–171. http://dx.doi.org/10.1595/147106710X500125
García-Ochoa E.M., Genescá J. (2000). EIS and electrochemical noise study of anodic passivation of palladium in alkaline medium. Rev. Metal. 36, 3–12. http://dx.doi.org/10.3989/revmetalm.2000.v36.i1.492
González-López S., Romero-Serrano A., Vargas-García R., Zeifert B., Cruz-Ramírez A. (2010). Analysis of the deoxidation process of copper with manganese using a platinum electrode-based sensor prepared by MOCVD. Rev. Metal. 46 (3), 219–226. http://dx.doi.org/10.3989/revmetalm.0927
Kim, K.B., Kim, Y.H., Song, K.S., Park, E.D. (2011). Propane combustion over Pt catalysts supported on zeolites. Rev. Adv. Mater. Sci. 28 (1), 35–39.
Kordas K., Nánai L., Bali K., Stepan K., Vajtai R., George T.F., Leppävuori, S. (2000) Palladium thin film deposition from liquid precursors on polymers by projected excimer beams. Appl. Surf. Sci. 168 (1–4), 66–70. http://dx.doi.org/10.1016/S0169-4332(00)00592-4
Loginov, Yu.N., Yermakov, A.V., Grohovskaya, L.G., Studenok, G.I. (2007). Annealing Characteristics and Strain Resistance of 99.93 wt.% Platinum. Platinum Met. Rev. 51 (4), 178–184. http://dx.doi.org/10.1595/147106707X237708
Ning, Y., Yang, Z., Zhao, H. (1996). Platinum recovery by palladium alloy catchment gauzes in nitric acid plants. Platinum Met. Rev. 4 (2), 80–87.
Ohm, W.S., Hill, K.D. (2010). A Mechanism for the Oxidation-Related Influence on the Thermoelectric Behavior of Palladium. Int. J. Thermophys. 31 (8–9), 1402–1416. http://dx.doi.org/10.1007/s10765-010-0748-2
Preston, E. (1960). Platinum in the glass industry. Platinum Met. Rev. 4, 48–55.
Ritvin, E.I., Medovoj, L.A. (1974). Vlianie fiziko-himicheskoj sledi na zharoprochnost merallicheskih materialov. Nauka, Moskva.
Ritvin, E.I. (1987). Zharoprochnost platinovih splavov. Metalurgija, Moskva, Russian.
Redon, R., Rendon-Lara, S.K., Fernández-Osorio, A.L., Ugalde-Saldivar, V.M. (2011). Aerobic synthesis of palladium nanoparticles. Rev. Adv. Mater. Sci. 27, 31–42.
Savickij, E.M., Poljakova, V.P., Gorina, N.B., Roshan, N.R. (1975). Metalovedenie platinovih metalov. Metalurgija, Moskva, Russian. PMid:1223965
Singh, J., Alayon, E.M.C., Tromp, M., Safonova, O.V., Glatzel, P., Nachtegaal, M., Frahm, R., van Bokhoven, J.A. (2008). Generating Highly Active Partially Oxidized Platinum during Oxidation of Carbon Monoxide over Pt/Al2O3: In Situ, Time-Resolved, and High-Energy-Resolution X-Ray Absorption Spectroscopy. Angew. Chem. Int. Edit. 47 (48), 9260–9264. http://dx.doi.org/10.1002/anie.200803427 PMid:18972471
Trumic´, B., Stankovic´, D., Trujic´, V. (2009). Examining the surfaces in used platinum catalysts. J. Min. Metall. Sect. B. 45 (1), 79–87. http://dx.doi.org/10.2298/JMMB0901079T
Trumic´, B., Stankovic´, D., Ivanovic´, A. (2010). The impact of cold deformatioon, annealing temperatures and chemical assays on the mechanical properties of platinum. J. Min. Metall. Sect. B. 46 (1), 51–57. http://dx.doi.org/10.2298/JMMB1001051T
Trumic´, B., GomidÏelovic´, L., Trujic´, V., Krstic´, V., Stankovic´, D. (2012). Comparative analysis of high temperature strength of platinum and its binary alloys with low content of alloying element. Hem. Ind. 66 (3), 395–401. http://dx.doi.org/10.2298/HEMIND110718106T
Wright, J.C. (2002). Jewellery-Related Properties of Platinum: Low Thermal Diffusivity Permits Use of Laser Welding for Jewellery Manufacture. Platinum Met. Rev. 46 (2), 66–72.
Wu, B., Liu, G. (1997). Platinum: Platinum-rhodium thermocouple Wire. Platinum Met. Rev. 41, 81–85.
Xiao, F., Zhao, F., Mei, D., Mo, Z., Zeng, B. (2009). Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosens. Bioelectron. 24 (12), 3481–3486. http://dx.doi.org/10.1016/j.bios.2009.04.045 PMid:19524431
Yuantao, N., Zhengfen, Y. (1999). Platinum loss from alloy catalyst gauzes in nitric acid Plants. Platinum Met. Rev. 43 (4), 62–69. http://www.technology.matthey.com/article/43/4/167-167-2/.
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.