The intermetallic bonding between a ring carrier and aluminum piston alloy

Authors

  • Srećko Manasijevic Lola Institute
  • Natalija Dolić University of Zagreb, Faculty of Metallurgy
  • Mile Djurdjevic Nemak Europe
  • Nataša Mišić Lola Institute
  • Novica Davitkov University of Belgrade

DOI:

https://doi.org/10.3989/revmetalm.048

Keywords:

Alfin bond, Intermetallic bond, Ni-Resist, Piston alloys, Ring carrier

Abstract


This paper presents the results of investigating the formation of intermetallic bond between a ring carrier and aluminum piston alloy. The ring carrier is made of austenitic cast iron (Ni-Resist) in order to increase the wear resistance of the first ring groove and applied in highly loaded diesel engines. Metallographic examination of the quality of alfin bond was done. A metallographic investigation using an optical microscope in combination with the SEM/EDS analysis of the quality of the intermetallic bonding layer was done. The test results show that can be made successfully as well as the formation of metal connection (alfin bond) between the ring carrier and aluminum piston alloy.

Downloads

Download data is not yet available.

References

Acar, A.F., Ozturk, F., Bayrak, M. (2010). Effects of variations in alloy content and machining parameters on the strength of the intermetallic bonding between a diesel piston and a ring carrier. Mater. Technol. 44 (6), 391–395.

Belov, N.A., Eskin, D.G., Avxenieva, N.N. (2005). Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys. Acta Mater. 53 (17), 4709–4722. http://dx.doi.org/10.1016/j.actamat.2005.07.003

Engine Australia Pty Ltd. (2012). Alfin (Ni-Resist) Ring groove inserts. Service Enginering Bulletin.

Kattner, U.R. (1990). Binary alloy phase diagrams. Massalski, T.B., (Ed.). ASM International, Materials Park, OH, p. 147.

Manasijevic, S., Radisa, R., Markovic, S., Raic, K., Acimovic-Pavlovic, Z. (2009). Implementation of the infrared thermography for thermo-mechanical analysis of the AlSi cast piston. Prakt. Metallogr. 46 (11), 565–579. http://dx.doi.org/10.3139/147.110015

Manasijevic´, S., Radiša, R., Markovic, S., Acimovic-Pavlovic, Z., Raic, K. (2011). Thermal analysis and microscopic characterization of the piston alloy AlSi13Cu4Ni2Mg. Intermetallics 19 (4), 486–492. http://dx.doi.org/10.1016/j.intermet.2010.11.011

Manasijevic, S. (2012). Aluminum Piston Alloys, Radiša, R. (Ed.), LOLA Institute Belgrade, Serbia.

Manasijevic, S., Acimovic-Pavlovic, Z., Raic, K., Radisa, R., Kvrgic, V. (2013). Optimisation of cast pistons made of Al-Si piston alloy. Int. J. Cast. Metal. Res. 26 (5), 255–261. http://dx.doi.org/10.1179/1743133612Y.0000000007

Manasijevic, S., Dolic, N., Raic, K., Radiša, R. (2014). Identification of Phases Formed by Cu and Ni in Al-Si Piston Alloys. La Metallurgia Italiana 106 (3), 13–19.

Worden, J.A., Starr, G.L., Chen, Y.-Ch. (2000). Formation of a graphite-free surface in a ferrous material to produce an improved intermetallic bond. Patente US6127046 A.

Willcox, M. (2000). Ultrasonic inspection equipment for Al-Fin insert diesel pistons. Insight NDT equipment Ltd. Available at. http://www.insight-ndt.com/papers/products/ut001.pdf. (accessed June/2015).

Viala, J.C., Peronnet, M., Barbeau, F., Bosselet, F., Bouix, J. (2002). Interface chemistry in aluminium alloy castings reinforced with iron base inserts. Compos. Part A-Appl. S. 33 (10), 1417–1420. http://dx.doi.org/10.1016/S1359-835X(02)00158-6

Published

2015-09-30

How to Cite

Manasijevic, S., Dolić, N., Djurdjevic, M., Mišić, N., & Davitkov, N. (2015). The intermetallic bonding between a ring carrier and aluminum piston alloy. Revista De Metalurgia, 51(3), e048. https://doi.org/10.3989/revmetalm.048

Issue

Section

Articles