Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests

Authors

  • José A. Segarra Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros Industriales, Departamento de Física Aplicada e Ingeniería de Materiales
  • Borja Calderón Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros Industriales, Departamento de Física Aplicada e Ingeniería de Materiales
  • Antonio Portolés Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros Industriales, Departamento de Física Aplicada e Ingeniería de Materiales

DOI:

https://doi.org/10.3989/revmetalm.050

Keywords:

AZ31, Corrosion, Immersion test, GTAW, NSS test

Abstract


In this article, the corrosion behavior of commercial AZ31 welded plates in aqueous chloride media was investigated by means of gravimetric techniques and Neutral Salt Spray tests (NSS). The AZ31 samples tested were welded using Gas Tugsten Arc Welding (GTAW) and different filler materials. Material microstructures were investigated by optical microscopy to stablish the influence of those microstructures in the corrosion behavior. Gravimetric and NSS tests indicate that the use of more noble filler alloys for the sample welding, preventing the reduction of aluminum content in weld beads, does not imply a better corrosion behavior.

Downloads

Download data is not yet available.

References

AENOR (2013). Steel. Micrographic determination of the apparent grain size (ISO 643:2012). Ed. AENOR, Madrid.

AENOR (2007). Corrosion tests in artificial atmospheres. Salt spray tests (ISO 9227:2006). Ed. AENOR, Madrid.

Avedesian, M., Baker, H. (1999). ASM Speciality Handbook. Magnesium alloys, Ed. ASM International, Materials Park, Ohio (USA), pp. 3–4.

Ben-Hamu, G., Eliezer, D., Cross, C.E., Böllinghaus, T. (2007). The relation between microstructure and corrosion behavior of GTA welded AZ31B magnesium sheet. Mat. Sci. Eng. A 452–453, 210–218. http://dx.doi.org/10.1016/j.msea.2006.12.122

Ben-Hamu, G., Eliezer, D., Wagner, L. (2009). The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. J. Alloy Compd. 48 (1–2), 222–229. http://dx.doi.org/10.1016/j.jallcom.2008.01.084

Cheng, Y., Qin, T.-W., Wang, H.-M., Zhang, Z. (2009). Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys. T. Nonferr. Metal. Soc. China 19 (3), 517–524. http://dx.doi.org/10.1016/S1003-6326(08)60305-2

Feliu, S. Jr., Maffiotte, C., Galván, J.C., Barranco, V. (2011). Atmospheric corrosion of magnesium alloys AZ31 and AZ61 under continuous condensation conditions. Corros. Sci. 53 (3), 1865–1872. http://dx.doi.org/10.1016/j.corsci.2011.02.003

Jäger, A., Lukác, P., Gärtnerová, V., Haloda, J., Dopita, M. (2006). Influence of annealing on the microstructure of commercial Mg alloy AZ31 after mechanical forming. Mat. Sci. Eng. A-Struct. 432 (1–2), 20–25. http://dx.doi.org/10.1016/j.msea.2006.06.070

Korb, L.J. (1992). ASM Handbook, Vol. 13, Corrosion, ASM International, Materials Park, Ohio.

Liao, J., Hotta, M., Yamamoto, N. (2012). Corrosion behavior of fine-grained AZ31B magnesium alloy. Corros. Sci. 61, 208–214. http://dx.doi.org/10.1016/j.corsci.2012.04.039

Lu, L., Liu, T., Chen, J., Wang, Z. (2012). Microstructure and corrosion behavior of AZ31 alloys prepared by dual directional extrusion. Mater. Design. 36, 687–693. http://dx.doi.org/10.1016/j.matdes.2011.12.023

Ming-Chun, Z., Schmutz, P., Brunner, S., Ming, L., Guang-Ling, S., Atrens, A. (2009). An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing. Corros. Sci. 51 (6), 1277–1292. http://dx.doi.org/10.1016/j.corsci.2009.03.014

Pardo, A., Merino, M.C., Coy, A.E., Arrabal, R., Viejo, F., Matykina, E. (2008). Corrosion behaviour of magnesium/ aluminium alloys in 3.5 wt.% NaCl. Corros. Sci. 50 (3), 823–834. http://dx.doi.org/10.1016/j.corsci.2007.11.005

Shi, Z., Liu, M., Atrens, A. (2010). Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52 (2), 579–588. http://dx.doi.org/10.1016/j.corsci.2009.10.016

Snir, Y., Ben-Hamu, G., Eliezer, D., Abramov, E. (2012). Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys. J. Alloy Compd. 528, 84–90. http://dx.doi.org/10.1016/j.jallcom.2012.03.010

Srinivasan, P.B., Riekehr, S., Blawert, C., Dietzel, W., Koçak, M. (2011). Mechanical properties and stress corrosion cracking behaviour of AZ31 magnesium alloy laser weldments. T. Nonferro. Met. Soc. China 21 (1), 1–8. http://dx.doi.org/10.1016/S1003-6326(11)60670-5

Walton, C.A., Martin, H.J., Horstemeyer, M.F., Wang, P.T. (2012). Quantification of corrosion mechanisms under immersion and salt-spray environments on an extruded AZ31 magnesium alloy. Corros. Sci. 56, 194–208. http://dx.doi.org/10.1016/j.corsci.2011.12.008

Winzer, N., Xu, P., Bender, S., Gross, T., Unger, W., Cross, C.E. (2009). Stress corrosion cracking of gas-tungsten arc welds in continuous-cast AZ31 Mg alloy sheet. Corros. Sci. 51 (9), 1950–1963. http://dx.doi.org/10.1016/j.corsci.2009.05.037

Xin, R., Li, B., Li, L., Liu, Q. (2011). Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl. Mater. Design. 32 (8–9), 4548–4552. http://dx.doi.org/10.1016/j.matdes.2011.04.031

Zemin, W., Ming, G., Haiguo, T., Xiaoyan, Z. (2011). Characterization of AZ31B wrought magnesium alloy joints welded by high power fiber laser. Mater. Charact. 62 (10), 943–951. http://dx.doi.org/10.1016/j.matchar.2011.07.002

Zeng, R., Zhang, J., Huang, W., Dietzel, W., Kainer, K.U., Blawert, C., Ke, W. (2006). Review of studies on corrosion of magnesium alloys. T. Nonferro. Met. Soc. China 16 (Sup. 2), s763–s771. http://dx.doi.org/10.1016/s1003-6326(06)60297-5

Zhang, T., Shao, Y., Meng, G., Cui, Z., Wang, F. (2011). Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior. Corros. Sci. 53 (5), 1960–1968. http://dx.doi.org/10.1016/j.corsci.2011.02.015

Published

2015-09-30

How to Cite

Segarra, J. A., Calderón, B., & Portolés, A. (2015). Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests. Revista De Metalurgia, 51(3), e050. https://doi.org/10.3989/revmetalm.050

Issue

Section

Articles