Influence of tin additions on the precipitation processes in a Cu-Ni-Zn alloys
DOI:
https://doi.org/10.3989/revmetalm.060Keywords:
Calorimetry, Cu-Ni-Zn alloys, Cu-Ni-Zn-Sn alloys, Kinetic, Precipitation hardeningAbstract
The influence of 1.1 wt% tin additions on the precipitation hardening of Cu-11 wt% Ni-20 wt% Zn alloy was studied by Differential Scanning Calorimetry (DSC), microhardeness measurements and High Resolution Transmission Electron Microscopy (HRTEM). The calorimetric curves, in the range of temperatures analyzed, show the presence of two exothermic reactions in the ternary alloy, associated to the short-range-order development assisted by migration of excess vacancies. On the other hand, one exothermic and one endothermic reaction are observed in the quaternary alloy, associated to the formation and dissolution of Cu2NiZn precipitates, respectively. It has been show that an addition of 1.1% tin plays an important role in the formation of Cu2NiZn precipitates, responsible for the precipitation hardening of the ternary alloy.
Downloads
References
Althqff, J.D., Johnson, D.D. (1997). The electronic origins of atomic short-range order in disordered fcc Cu-Ni-Zn ternary alloys. J. Phase Equilib. 18 (6), 567-572. http://dx.doi.org/10.1007/BF02665813
Brown, A.M., Ashby, M.F. (1980). Correlation for diffusion constants. Acta Metall. 28 (8), 1085-1101. http://dx.doi.org/10.1016/0001-6160(80)90092-9
Christian, J.W. (2002). The Theory of Transformations in Metals and Alloys, 3™ Ed., Pergamon Press, pp. 529-552.
Chvoj, Z., Sestak, J., Triska, A. (1991). Kinetic Phase Diagrams, Non Equilibrium Phase Transitions, Elsevier, Holanda, p. 222.
De Rooy, A., Van Der Wegen, G.J.L., Bronsweld, P.M., De Hosson, J.T.M. (1981). The quasi-binary cross section in the ternary system Cu-Ni-Zn. II. Electrical Resistivity measurements. Scripta Metall. 15 (12), 1362-1364.
Donoso, E., DÌaz, G., Varchavsky, A. (2005). Thermal behavior of short range-order in quenched Cy-12 at.% Mn assessed by DSC. J. Therm. Anal. Calorim. 81 (2), 425-433. http://dx.doi.org/10.1007/s10973-005-0802-7
Donoso, E., Diánez, M.J., Sayagués, M.J., Criado, J.M., Varschavsky, A., Díaz, G. (2007). Non isothermal calorimetric study of the precipitation processes in a Cu-10%Ni-3%Al. Rev. Metal. 43 (2), 117-124. http://dx.doi.org/10.3989/revmetalm.2007.v43.i2.58
Donoso, E. (2010). Influencia de la adición de cobalto y cromo en el proceso de precipitación en una aleación de Cu-4Ti. Rev. Metal. 46 (6), 542-547. http://dx.doi.org/10.3989/revmetalmadrid.1042
Donoso, E., Espinoza, R., Di·nez, M.J., Criado, J.M. (2012). Microcalorimetric study of the annealing hardening mechanism of a Cu-2.8Ni-1.4Si (at%) alloy. Mat. Sci. Eng. A-Struct. 556, 612-616. http://dx.doi.org/10.1016/j.msea.2012.07.035
Donoso, E. (2014). Estudio cinÈtico de las reacciones de recocido en aleaciones de Cu-Ni-Fe. Rev. Metal. 50 (3), e020. http://dx.doi.org/10.3989/revmetalm.020
Donoso, E., Di·nez, M.J., Criado J.M., SayaguÈs, M.J. (2014). Caracterización cinÈtica de la precipitación en una aleación de Cu-11Ni-20Zn y Cu-12Ni-17Zn-2Al. Congreso Internacional de Metalurgia y Materiales SAM-CONAMET/IBEROMAT/MATERIA, Santa FÈ, Argentina, pp. 1-4.
Gotor, F.J, Criado, J.M., M·lek, J., Koga, N. (2000). Kinetic analysis of solid-state reactions: The universality of master plots for analyzing isothermal and nonisothermal experiments. J. Phys. Chem. A 104 (46), 10777-10782. http://dx.doi.org/10.1021/jp0022205
Groza, J.R., Gibeling, J.C. (1993). Principles of particle selection for dispersion-strengthened copper. Mat. Sci. Eng. A-Struct. 171 (1-2), 115-125. http://dx.doi.org/10.1016/0921-5093(93)90398-X
Hirabayashi, M., Hoshino, S., Sato, K. (1965). Neutron diffraction study of the long-range order in a single crystal Cu2NiZn. J. Phys. Soc. Jpn. 20, 381-388. http://dx.doi.org/10.1143/JPSJ.20.381
Kissinger, H.E. (1957). Reaction kinetics in Differential Thermal Analysis. Anal. Chem. 29 (11), 1702-1706. http://dx.doi.org/10.1021/ac60131a045
Ito, T., Nakayama, Y. (1988). Dislocation-structures in deformed Cu-Ni-Zn alloy single-crystals. J. Mater. Sci. 23 (6), 2174-2180. http://dx.doi.org/10.1007/BF01115785
Lebrun, N., Perrot, P. (2007). Non-ferrous Metal Ternary Systems: Selected Soldering and Brazing Systems, Copper-Nickel-Zinc, Vol. 11-C3, Effenberg G., Ilyenko S. (Eds.), Series Landolt-Bˆrnstein-Group IV Physical Chemistry, Springer, Alemania, pp. 338-354.
Luo, Y.R. (2015). Handbook of Chemistry and Physics, Bond Dissociation Energies, 96th Ed., Haynes W.M. Editor, CRC Press/Taylor and Francis, Boca Raton, Florida, pp. 9-65.
Mittemeijer, E.J., Cheng, L., Van der Schaaf, P.J., Brakmany, C.M., Korevaar, B.M. (1988). Analysis of nonisothermal transformation kinetics; tempering of iron-carbon and iron-nitrogen martensites. Metall. Trans. A 19 (4), 925-932. http://dx.doi.org/10.1007/BF02628377
Nagarjuna, S., Srinivas, M., Sharma, K.K. (2000). The grain size dependence of flow stress in a Cu-26Ni-17Zn alloy. Acta Mater. 48 (8), 1807-1813. http://dx.doi.org/10.1016/S1359-6454(99)00464-4
Nagarjuna, S., Gopalakrishna, B., Srinivas, M. (2006). On the strain hardening exponent of Cu-26Ni-17Zn alloy. Mat. Sci. Eng. A-Struct. 429 (1 2), 169-172. http://dx.doi.org/10.1016/j.msea.2006.05.096
Ozawa, T. (1976). A modified method for kinetic analysis of thermoanalytical data. J. Therm. Anal. 9 (3), 369-373. http://dx.doi.org/10.1007/BF01909401
Palma, R.H., Sepúlveda, A.O., Espinoza, R.G, Zú-iga, A.P., Di·nez, M.J., Criado, J.M., Sayagués, M.J. (2004). Hightemperature mechanical behaviour of Cu-Ti-C, Cu-Al and Cu-Ti-Al-C alloys obtained by reaction milling. Mat. Sci. Eng. A-Struct. 384 (1-2), 262-269. http://dx.doi.org/10.1016/S0921-5093(04)00862-7
Palma, R.H., Sepúlveda, A.O., Espinoza, R.G., Diánez, M.J., Criado, J.M., Sayagués, M.J. (2005). High-temperature deformation of dispersion-strengthened Cu-Zr-Ti-C alloys. Mat. Sci. Eng. A-Struct. 391 (1-2), 60-65. http://dx.doi.org/10.1016/j.msea.2004.08.058
Palma, R., Sepú˙lveda, A., Z˙Òiga, A., Donoso, E., Diánez, M.J., Criado, J.M. (2010). Microstructural characterization of copper based alloys produced by reactive milling. Rev. Metal. 46 (3), 197-205.
Pearson, W.B. (1958). A Handbook of Lattice Spacing and Structures of Metals and Alloys, Pergamon Press, pp. 571-574.
Simak, S.I., Ruban, A.V., Abrikosov, I.A., Skriver, H.L., Johansson, B. (1998). Ordered Phases in Cu2NiZn: A First- Principles Monte Carlo Study. Phys. Rev. Lett. 81, 188-191. http://dx.doi.org/10.1103/PhysRevLett.81.188
Svadlak, Z., Zmirhalova, Z., Pustkova, P., M·lek, J., Pérez-Maqueda, L.A., Criado, J.M. (2008). Crystallization behavior of (GeS2)0.1(Sb2S3)0.9 glass. J. Non Cryst. Solids 354 (28), 3354-3361. http://dx.doi.org/10.1016/j.jnoncrysol.2008.01.029
Van der Wegen, G.J.L., De Rooy, A., Bronsveld, P.M., De Hosson, J.T.M. (1981). The order-didorder transition in the quasibinary cross section Cu50Ni50-xZnx. I. Transmision Electron Microscopic Observations. Scripta Metall. 15, 1359-1364. http://dx.doi.org/10.1016/0036-9748(81)90098-3
Van der Wegen, G.J.L., Helmholdt, R., Bronsweld, P., De Hosson, J. (1983). Single Crystal Neutron Diffraction Study of the Long-Range order in Cu2NiZn. Z. Metallkd. 74 (9), 592-597.
Varschavsky, A., Donoso, E. (1991). Short range ordering by excess and thermal vacancies during linear heating experiments in a-Cu-Al alloys. Mat. Sci. Eng. A-Struct. 145 (1), 95-107. http://dx.doi.org/10.1016/0921-5093(91)90299-3
Varschavsky, A., Donoso, E. (2002). Energetic and kinetic evaluations conducted in a quasi-binary Cu-1 at.% Co2Si alloy through DSC. J. Therm. Anal. Calorim. 68 (1), 231-241. http://dx.doi.org/10.1023/A:1014969618372
Varschavsky, A., Donoso, E. (2003). Energetic and kinetic evaluations in a quasi-binary Cu-1 at.% Co2Si. Mater. Lett. 57 (7), 1266-1271. http://dx.doi.org/10.1016/S0167-577X(02)00970-9
Wnuk, G., Zielinska, M. (2009). Microstructural and thermal analysis of Cu-Ni-Sn-Zn alloys by means of SEM and DSC techniques. Archives Mater. Sci. Eng. 40 (1), 27-32.
Zhou, X.Z., Su, Y.C., Sun, J.M. (2010). Effect of aluminium on precipitation hardening in Cu-Ni-Zn alloys. J. Mater. Sci. 45 (11), 3080-3087. http://dx.doi.org/10.1007/s10853-010-4315-9
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.