Characterization of the surface oxidation reaction and its influence on the radiation absorption during the surface laser hardening process of the 42CrMo4 steel

Authors

  • Francisco Cordovilla Universidad Politécnica de Madrid, Centro Láser (CLUPM)
  • Jesús Domínguez IKERGUNE A.I.E.
  • Paula Sancho IKERGUNE A.I.E.
  • Ángel García-Beltrán Universidad Politécnica de Madrid, Centro Láser (CLUPM)
  • José Luis Ocaña Universidad Politécnica de Madrid, Centro Láser (CLUPM)

DOI:

https://doi.org/10.3989/revmetalm.067

Keywords:

Absorption, Hardening, Laser, Oxidation, Steel, Superficial

Abstract


Surface laser hardening of steel is a process that produces an enormous interest due to its uncountable advantages in terms of quality and productivity against induction hardening The effective implantation of this process, nevertheless, is been hampered because of the lack of reliable and flexible predictive tools. There are different models focused on the temperature calculation, thought, few make a thorough analysis of the surface oxidation associated with the process and its important implications over the absorption coefficient. This work proposes and explains a coupled model temperature/ oxidation available in literature, applied, for the first time, for the simulation of simple processes carried out with different conditions of power and speed, for the 42CrMo4 steel. These conditions have been reproduced experimentally, tracking the maximum surface temperature and the oxide thickness. Both results have shown a high degree of coincidence whit theoretical predictions, confirming the capabilities and utility of the model.

Downloads

Download data is not yet available.

References

Alvin, P., Penner, A.P., Rakhal C.B., Wendell, F. (2007). Activation energy and non-equilibrium effects in thermal reactions. Int. J. Chem. Kinet. 9 (3), 371-377.

Abuluwefa, H.T. (2012). Kinetics of high temperature oxidation of High Carbon Steels in Multi-component gases approximating industrial steel reheat furnace atmospheres. Proceedings of the International MultiConference of Engineers and Computer Scientist (IMECS 2012), Hong Kong, pp. 1664-1668.

Antonov, V., Iordanova, I., Gurkovsky, S. (2002). Investigation of surface oxidation of low carbon sheet steel during its treatment with Nd:Glass pulsed laser. Surf. Coat. Tech. 160 (1), 44-53. http://dx.doi.org/10.1016/S0257-8972(02)00344-4

Avery, H.E. (2002). Cinética química básica y mecanismos de reacción, Cap. IV: Dependencia de la velocidad con la temperatura, Editorial Revert., Barcelona, Espa.a, pp. 51-61.

Bailey, N.S., Tan, W., Shin, Y.C. (2009). Predictive modeling and experimental results for residual stresses in laser hardening of AISI 4140 steel by a high power diode laser. Surf. Coat. Tech. 203 (14), 2003-2012. http://dx.doi.org/10.1016/j.surfcoat.2009.01.039

Cordovilla-Bar., F., García-Beltrán, A., Ocaña-Moreno, J.L. (2014). Aplicación de modelos simplificados para la determinación de ventanas de trabajo para el temple de aceros por l.ser. Dyna 89 (5), 533-541. http://dx.doi.org/10.6036/7079

Cordovilla, F., García-Beltrán, A., Domínguez, J., Sancho, P., Ocaña, J.L. (2015). Numerical-experimental analysis of the effect of surface oxidation on the laser transformation hardening of Cr-Mo steels. Appl. Surf. Sci. 357, 1236-1243. http://dx.doi.org/10.1016/j.apsusc.2015.09.143

Duley, W.W., Semple, D.J., Morency, J.P., Gravel, M. (1979). Coupling coefficient for cw CO2 laser radiation on stainless steel. Opt. Laser Technol. 11 (6), 313-316. http://dx.doi.org/10.1016/0030-3992(79)90008-2

García-Beltrán, A., Marín, L.F., Ocaña, J.L. (2007). An.lisis de la influencia del factor de solapamiento en el tratamiento t.rmico de superficies extensas de aceros por l.ser. Rev. Metal. 43 (4), 284-293. http://dx.doi.org/10.3989/revmetalm. 2007. v43.i4.74. http://dx.doi.org/10.3989/revmetalm

García-Beltrán, A., Ocaña, J.L., Molpeceres, C.L. (2008). TEMPLUM: A process adapted numerical simulation code for the 3D predictive assessment of laser surface heat treatments in planar geometry. WSEAS Transactions on Computers 7 (2), 65-74.

Ion, J.C. (2005). Laser processing of engineering materials. Principles, procedure and industrial application. Chapter 9: Surface Hardening, Elsevier, Oxford, pp. 221-249.

Kechemair, D., Luneville, E. (1987). Modelisation de la tempre superficielle des aciers par laser CO2 continu. Rapport, .tablissement Technique Central de L'Armement (E.T.C.A.), France.

Leung, M.K.H., Man, H.C., Yu, J.K. (2007). Theoretical and experimental studies on laser transformation hardening of steel by customized beam. Int. J. Heat Mass Tran. 50 (23-24), 4600-4606. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.03.022

Miettinen, J. (1997). Calculation of solidification-related thermophysical properties for steels. Metall. Mater. Trans. B 28 (2), 281-297. http://dx.doi.org/10.1007/s11663-997-0095-2

Miokovik, T., Schwarzer, J., Schulze, V., V.hringer, O., L.he, D. (2004). Description of short time phase transformations during the heating of steels based on high-rate experimental data. J. Phys. IV France 120, 591-598.

Nánai, L., Vajtai, R., George, T.F. (1997). Laser-induced oxidation of metals: state of the art. Thin Solid Films 298 (1-2), 160-164. http://dx.doi.org/10.1016/S0040-6090(96)09390-X

Oliveira, F.L.G., Andrade, M.S., Cota, A.B. (2007). Kinetics of austenite formation during continuous heating in low carbon steel. Mater. Charact. 58 (3), 256-261. http://dx.doi.org/10.1016/j.matchar.2006.04.027

Otero-Huerta, E. (2012). Corrosión y degradación de materiales, Cap.: Cinética de corrosión a alta temperatura (2. Ed.), Editorial Síntesis, Madrid, pp. 283-299.

Pantsar, H., Kujanp.., V. (2004). Diode laser beam absorption in laser transformation hardening of low alloy steel. J. Laser Appl. 16, 147-153. http://dx.doi.org/10.2351/1.1710879

Pantsar, H., Kujanp.., V. (2006). Effect of oxide layer growth on diode laser beam transformation hardening of steels. Surf. Coat. Tech. 200 (8), 2627-2633. http://dx.doi.org/10.1016/j.surfcoat.2004.09.001

Pryor, A., Réquiz, R., Berrocal, A., Miranda, A. (1986). Comportamiento a la oxidación a altas temperaturas de un acero AISI 316 modificado. Revista Latinoamericana de Metalurgia y Materiales 6 (1-2), 55-61.

UNE-EN-10083-1 (2008). Aceros para temple y revenido. Parte 1: Condiciones técnicas de suministro, AENOR, Madrid, España.

Published

2016-06-30

How to Cite

Cordovilla, F., Domínguez, J., Sancho, P., García-Beltrán, Ángel, & Ocaña, J. L. (2016). Characterization of the surface oxidation reaction and its influence on the radiation absorption during the surface laser hardening process of the 42CrMo4 steel. Revista De Metalurgia, 52(2), e067. https://doi.org/10.3989/revmetalm.067

Issue

Section

Articles