Elasto-plastic hardening models adjustment to ferritic, austenitic and austenoferritic Rebar
DOI:
https://doi.org/10.3989/revmetalm.94Keywords:
Elastoplastic behavior, Hollomon curve, Patterned bar, Ramberg-Osgood curve, Strain hardening exponent, Stress-strain curveAbstract
The elastoplastic behaviour of steel used for structural member fabrication has received attention to facilitate a mechanical-resistant design. New Zealand and South African standards have adopted various theoretical approaches to describe such behaviour in stainless steels. With respect to the building industry, describing the tensile behaviour of steel rebar used to produce reinforced concrete structures is of interest. Differences compared with the homogenous material described in the above mentioned standards and related literatures are discussed in this paper. Specifically, the presence of ribs and the TEMPCORE® technology used to produce carbon steel rebar may alter the elastoplastic model. Carbon steel rebar is shown to fit a Hollomon model giving hardening exponent values on the order of 0.17. Austenitic stainless steel rebar behaviour is better described using a modified Rasmussen model with a free fitted exponent of 6. Duplex stainless steel shows a poor fit to any previous model.
Downloads
References
Abbassi, F., Mistou, S., Zghal, A. (2013). Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile test. Mater. Design 49, 638–646. https://doi.org/10.1016/j.matdes.2013.02.020
Abdella, K. (2006). Inversion of a full range stress-strain relation for stainless steel alloys. Int. J. Non-Lineal Mech. 41 (3), 456–463. https://doi.org/10.1016/j.ijnonlinmec.2005.10.002
Abdella, K. (2007). An explicit stress formulation for stainless steel applicable in tension and compression. J. Constr. Steel Res. 63 (3), 326–331. https://doi.org/10.1016/j.jcsr.2006.06.001
Abdella, K. (2009). Explicit full-range stress-strain relations for stainless steel at high temperatures. J. Constr. Steel Res. 65 (4), 794–800. https://doi.org/10.1016/j.jcsr.2008.09.001
Abdella, K., Thannon, R.A., Mehri, A.I., Alshaikh, F.A. (2011). Inversion of three-stage stress-strain relation for stainless steel in tension and compression. J. Constr. Steel Res. 67 (5), 826–832. https://doi.org/10.1016/j.jcsr.2010.12.011
Aparicio, G., D'Armas, H., Ciaccia, M. (2007). Comportamiento elastoplástico en tracción de láminas de acero ASTM A-569. Rev. Ing. 14 (1), 57–63.
AS/NZS 4673 (2001). Cold-formed stainless steel structures. Welding Technology Institute of Australia, Standards Australia International Ltd, New Zealand.
Bergström, Y. (2011). The Hollomon n-value, and the strain to necking in steel. YB mat. www.plastic-deformation.com/paper8.pdf.
Castro, H., Rodríguez, F.J., Belzunce, F.J. (2001). Comportamiento a fractura de aceros inoxidables austeníticos utilizados como material de refuerzo en hormigón armado. Anales Mecánica la Fractura 18, 124–129.
Considére, M. (1885). L’emploi du fer et de l’acier dans les constructions. Annales Des Ponts et Chaussées 6 (9), 574-775.
Dieter, G.E. (1976). Mechanical Metallurgy. 2nd Edition, McGraw Hill, Nueva York.
Do-ate Megías, A., Calavera Ruiz, J., Galligo Estévez, J.M., Marí Bernat, A.R., Perepérez Ventura, B., Gómez Rey, N., Ruano Paniagua, N. (2003). Diagramas característicos de tracción de los aceros con características especiales de ductilidad, con marca ARCER. Monografías ARCER Nº 4. Instituto para la promoción de armaduras certificadas (IPAC), Madrid.
Dowling, N.E. (1999). Mechanical Behaviour of Materials. 4th Edition, Prentice Hall, Upper Saddle River.
EN 1992-1-1 (2004). Design of concrete structures. European Standard.
Hollomon, J.H. (1945). Tensile deformation. Trans. Am. Inst. Min. Eng. 162, 268–290.
Hortigón, B., Nieto-García, E.J., Fernández-Ancio, F., Hernández, O. (2012). Influence of corrugation shape in steel bars ductility used on reinforced concrete. AIP Conference Proceedings 1431, 111-117. https://doi.org/10.1063/1.4707556
Kallpakjian, S., Schmid, S.R. (2003). Manufacturing Processes for Engineering Materials. Prentice Hall, Upper Saddle River.
Kang, G., Kan, Q. (2007). Constitutive modeling for uniaxial time-dependent ratcheting of SS304 stainless steel. Mech. Mater. 39 (5), 488–499. https://doi.org/10.1016/j.mechmat.2006.08.004
Komori, K. (2014). Evaluation of ductile fracture in sheet metal forming using the ellispsoidal void model. Mech. Mater. 77, 67–79. https://doi.org/10.1016/j.mechmat.2014.07.002
Macdonald, M., Rhodes, J., Taylor, G.T. (2000). Mechanical properties of stainless steel lipped channels. 15th International Specialty Conference on Cold-Formed Steel Structures, St. Louis, Missouri, USA, pp. 673-686.
Mashayekhi, M., Ziaei-Rad, S., Parvizian, J., Niklewicz, J., Hadavinia, H. (2007). Ductile crack growth based on damage criterion: Experimental and numerical studies. Mech. Mater. 39 (7), 623–636. https://doi.org/10.1016/j.mechmat.2006.10.004
Mirambell, E., Real, E. (2000). On the calculation of deflections in structural stainless steel beams: An experimental and numerical investigation. J. Constr. Steel Res. 54 (1), 109–133. https://doi.org/10.1016/S0143-974X(99)00051-6
Nadai, A. (1950). Theory of flow and fracture of solids. McGraw Hill, New York.
Nayebi, A., El Abdi, R., Bartier, O., Mauvoisin, G. (2002). New procedure to determine steel mechanical parameters from the spherical indentation technique. Mech. Mater. 34 (4), 243–254. https://doi.org/10.1016/S0167-6636(02)00113-8
Quach, W.M., Teng, J.G., Chung, K.F. (2008). Three-stage full-range stress-strain model for stainless steels. J. Struct. Eng. 134 (9), 1518–1527. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1518)
Ramberg, W., Osgood, W.R. (1943). Description of stress-strain curves by three parameters. Report: Technical Note 902, National Advisory Committee for Aeronautics, Washington, USA.
Rasmussen, K. (2003). Full-range stress-strain curves for stainless steel alloys. J. Constr. Steel Res. 59 (1), 47–61. https://doi.org/10.1016/S0143-974X(02)00018-4
SABS 0162-4 (1997). Structural use of steel. Part 4: The design of cold-formed stainless steel structural members. The South African Bureau of Standards, Johannesburgo.
UNE-EN-ISO 6892-1 (2010). Materiales metálicos. Ensayo de tracción. Parte 1: Método de ensayo a temperatura ambiente. AENOR, Madrid.
UNE-EN-ISO 15630-1 (2011). Aceros para el armado y el pretensado de hormigón. Métodos de ensayo. Parte 1: Barras, alambres y alambrón para hormigón armado. AENOR, Madrid.
Wang, K., Carsley, J.E., He, B., Li, J., Zhang, L. (2014). Measuring forming limit strains with digital image correlation analysis. J. Mater. Process. Tech. 214 (5), 1120–1130. https://doi.org/10.1016/j.jmatprotec.2014.01.001
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.