Electrical properties of ternary Bi-Ge-Sb and Al-Cu-Sb alloys
DOI:
https://doi.org/10.3989/revmetalm.098Keywords:
Electrical conductivity, Hardness, Materials testing, MicrostructureAbstract
Electrical properties of ternary Bi-Ge-Sb and Al-Cu-Sb alloys. This paper presents review of electrical properties of two ternary systems based on Sb, ternary Bi-Ge-Sb and Al-Cu-Sb system. Beside electrical properties in paper are presented microstructures of both systems observed with light optical microscopy. On four samples microstructural analysis was carried out by scanning electron microscopy combined with energy dispersive spectrometry and X-ray powder diffraction technique. Moreover, micro hardness of selected alloys from the ternary Bi-Ge-Sb system was determined using Vickers hardness tests.
Downloads
References
Barrett, C.S., Cucka, P., Haefner, K. (1963). The crystal structure of antimony at 4.2, 78 and 298° K. Acta Crystallogr. 16, 451-453. https://doi.org/10.1107/S0365110X63001262
Bech, J., Corrales, I., Tume, P., Barceló, J., Duran, P., Roca, N., Poschenrieder, C. (2012). Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees). J. Geochem. Explor. 113, 100-105. https://doi.org/10.1016/j.gexplo.2011.06.006
Box, G., Draper, N. (2006). Response Surfaces, Mixtures, and Ridge Analyses. 2nd Ed., John Wiley and Sons, Inc., New Jersey.
Cornell, J.A. (1990). Experiments with Mixtures. Designs, Models, and the Analysis of Mixtures Data. 2nd Ed., John Wiley and Sons, Inc., New York. PMCid:PMC54465
Cucka, P., Barrett, C.S. (1962). The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi. Acta Crystallogr. 15, 865-872. https://doi.org/10.1107/S0365110X62002297
Cui, X.D., Wang, Y.J., Hockmann, K., Zhou, D.M. (2015). Effect of iron plaque on antimony uptake by rice (Oryza sativa L.). Environ. Pollut. 204, 133-140. https://doi.org/10.1016/j.envpol.2015.04.019 PMid:25947970
Gierlotka, W. (2014). A new thermodynamic description of the binary Sb-Zn system. J. Min. Metall. Sect. B-Metall. B 50 (2), 149-155. https://doi.org/10.2298/JMMB131103020G
Guo, C., Li, C., Du, Z. (2016). Thermodynamic modeling of the Ga–Pt–Sb system. Calphad 52, 169-179. https://doi.org/10.1016/j.calphad.2016.01.001
Gray, T., Mann, N., Whitby, M. (2013). Electrical Conductivity of the elements. Available at http://periodictable.com/Properties/A/ElectricalConductivity.an.html (accesses 24.01.2016).
He, M., Wang, X., Wu, F., Fu, Z. (2012). Antimony pollution in China. Sci. Total Environ. 421-422, 41-50. https://doi.org/10.1016/j.scitotenv.2011.06.009 PMid:21741676
Illescas, S., Fernández, J., Asensio, J., Sánchez-Soto, M., Guilemany, J.M. (2009). Study of the mechanical properties of low carbon content HSLA steels. Rev. Metal. 45 (6), 424-431. https://doi.org/10.3989/revmetalm.0902
Johnson, C.A., Moench, H., Wersin, P., Kugler, P., Wenger, C. (2005). Solubility of antimony and other elements in samples taken from shooting ranges. J. Environ. Qual. 34 (1), 248-254. PMid:15647555
Kolarevic, M. (2004). Rapid product development. Ed. Foundation Andrejevic, Belgrad. PMid:15109152
Lazic, ?. (2004). Design of Experiments in Chemical Engineering: Practical Guide. Ed. Wiley-VCH Verlag GmbH & Co.KGaA, Weiheim, Alemania.
Liu, Y., Xu, J., Kang, Z., Wang, J. (2013). Thermodynamic descriptions and phase diagrams for Sb–Na and Sb–K binary systems. Thermochim. Acta 569, 119-126. https://doi.org/10.1016/j.tca.2013.07.009
Macgregor, K., MacKinnon, G., Farmer, J., Graham, M. (2015). Mobility of antimony, arsenic and lead at a former antimony mine, Glendinning, Scotland. Sci. Total Environ. 529, 213-222. https://doi.org/10.1016/j.scitotenv.2015.04.039 PMid:26011617
Mini?, D., Premovi?, M., Cosovi?, V., Manasijevi?, D., ?ivkovi?, D., Kostov, A., Talijan, N., (2013). Experimental investigation and thermodynamic calculations of the Al–Cu–Sb phase diagram. J. Alloy Compd. 555, 347-356. https://doi.org/10.1016/j.jallcom.2012.12.059
Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M. (2009). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 3rd Ed., John Wiley and Sons, New Jersey, p. 704.
Pearson, W.B. (1985). The Cu2Sb and related structures. Z. Kristallogr. 171, 23-39.
Pierart, A., Shahid, M., Séjalon-Delmas, N., Dumat, C. (2015). Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. J. Hazard. Mater. 289, 219-234. https://doi.org/10.1016/j.jhazmat.2015.02.011 PMid:25726907
Premovic, M., Mini?, D., Cosovi?, V., Manasijevi?, D., ?ivkovi?, D. (2014). Experimental investigation and thermodynamic calculations of the Bi-Ge-Sb phase diagram. Metall. Mater. Trans. A 45(11), 4829-4841. https://doi.org/10.1007/s11661-014-2445-4
Serrano, N., Díaz-Cruz, J.M., Ari-o, C., Esteban, M. (2016). Antimony- based electrodes for analytical determinations. Trends Analyt. Chem. 77, 203-213. https://doi.org/10.1016/j.trac.2016.01.011
Sun, W., Xiao, E., Dong, Y., Tang, S., Krumins, V., Ning, Z., Sun, M., Zhao, Y., Wu, S., Xiao, T., (2016). Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Sci. Total Environ. 550, 297-308. https://doi.org/10.1016/j.scitotenv.2016.01.090 PMid:26820933
Swanson, H.E., Tatge, E. (1953). Standard X-ray diffraction powder patterns. Vol. 1, National Bureau of Standards, USA, pp. 1-95.
Verbeken, K., Infante-Danzo, I., Barros-Lorenzo, J., Schneider, J., Houbaert, Y. (2010). Innovative processing for improved electrical steel properties. Rev. Metal. 46(5), 458-468. https://doi.org/10.3989/revmetalm.1010
Vinhal, J., Gonçalves, A., Cruz, G., Cassella, R. (2016). Speciation of inorganic antimony (III & V) employing polyurethane foam loaded with bromopyrogallol red. Talanta 150, 539-545. https://doi.org/10.1016/j.talanta.2015.12.080 PMid:26838441
Westman, S. (1965). Refinement of the gamma - Cu9Al4 structure. Acta Chem. Scand. 19, 1411-1419. https://doi.org/10.3891/acta.chem.scand.19-1411
Woolley, J.C., Smith, B.A. (1958). Solid solution in A(III) B(V)compounds. Proc. Phys. Soc. 72(2), 214-223. https://doi.org/10.1088/0370-1328/72/2/306
Zobac, O., Sopou?ek, J., Kroupa, A. (2015). Calphad-type assessment of the Sb–Sn–Zn ternary system. Calphad 51, 51-56. https://doi.org/10.1016/j.calphad.2015.08.002
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.