Characterization and hardenability evaluation of gray cast iron used in the manufacture of diesel engine cylinder liners
DOI:
https://doi.org/10.3989/revmetalm.101Keywords:
Diesel engines, Engine cylinder liners, Gray cast iron, Heat Treatments, QuenchingAbstract
The increment of the mechanical properties (surface hardness) of engine cylinder is one of the principal goals for foundry company, to increase the competitiveness of their products in the local and foreign market. This study focused on the characterization of the gray cast iron used in the production of engine cylinder liners and metallurgical parameters determination in the design of conventional quenching heat treatment. The characterization was performed by material hardenability evaluation using Grossmann method, and Jominy test; the austenitizing temperature and the severity of cooling medium to a proper hardening of material were selected. Results revealed that the excellent hardness value obtained is attributed to the suitable hardenability of the gray cast iron and adequate severity selection for hardening treatment.
Downloads
References
Angus, H.T. (1976). Cast Iron: Physical and Engineering Properties. Second Edition, Elsevier Ltd.
ASM Handbook (1991). Heat Treating. Handbook Committee. Vol. 4, ASM International.
ASM Handbook (1992). Castings. Handbook Committee. Vol. 15, ASM International.
ASTM E3-11 (2011). Standard Guide for Preparation of Metallographic Specimens. ASTM International, West Conshohocken, PA.
ASTM A255-10 (2014). Standard Test Methods for Determining Hardenability of Steel. ASTM International, West Conshohocken, PA.
ASTM E7-15 (2015). Standard Terminology Relating to Metallography. ASTM International, West Conshohocken, PA.
ASTM E407-07 (2015). Standard Practice for Microetching Metals and Alloys, ASTM International, West Conshohocken, PA.
ASTM A247-16a (2016). Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings. ASTM International, West Conshohocken, PA.
Balachandran, G., Vadiraj, A., Kamaraj, M., Kazuya, E. (2011). Mechanical and wear behavior of alloyed gray cast iron in the quenched and tempered and austempered conditions. Mater. Design 32 (7), 4042–4049. https://doi.org/10.1016/j.matdes.2011.03.054
Bates, C.E., Totten, G.H. (1992). Quench Severity Effects on the As-Quenched Hardness of Selected Alloy Steels. Heat Treat. Met. 2, 45–48.
Brooks, C.R. (1979). Heat treatment of ferrous alloys. Editorial McGraw- Hill Book Company, USA.
Clarke, K.D., Van Tyne, C.J. (2005). Effect of Prior Microstructure and Heating Rate on Austenite Formation Kinetics in Three Steels for Induction Hardened Components. Report: Department of Metallurgical and Materials Engineering, Colorado School of Mines, USA. https://www.forging.org/uploaded/content/media/Microstructure_heating.pdf.
Cunningham, J.L., Medlin, D.J., Krauss, G. (1999). Effects of induction hardening and prior cold work on a microalloyed medium carbon steel. J. Mater. Eng. Perform. 8 (4), 401–408. https://doi.org/10.1361/105994999770346684
Davis, J.R. (1996). Cast Irons ASM Specialty Handbook. ASM International, Handbook Committee.
Dimitry, V.B., Carvalho, M.M.O., de Castro, J.A., Lourenco, T.R.M. (2016). Kinetic Study on Martensite Formation in Steels 1045 and 4340 under Variable Cooling Rates. Mat. Sci. Forum 869, 550–555. https://doi.org/10.4028/www.scientific.net/MSF.869.550
DPN (2007). Metalmecánica y Siderurgia. Agenda interna para la productividad y competitividad, Departamento Nacional de Planeación, Documento sectorial. https://es.scribd.com/document/214292177/Metalmecanica-y-Siderurgia.
Ferreira, J.C. (2002). A study of cast chilled iron processing technology and wear evaluation of hardened gray iron for automotive application. J. Mater. Process. Tech. 121 (1), 94–101. https://doi.org/10.1016/S0924-0136(01)01208-0
Gliner, R.E., Vybornov, V.V. (2014). Use of the Standard End Quenching Test for Predicting Heat-Hardening of Cast Iron. Metal Sci. Heat Treat. 56 (7), 424–427. https://doi.org/10.1007/s11041-014-9775-0
Grossman, M.A. (1942). Hardenability Calculated from Chemical Composition. AIME Transactions 150, 227–259.
Lamont, J.L. (1943). How to estimate hardening depth in bars. Iron Age 152, 64–70.
Lasheras, J.M. (1978). Tecnología del acero. Editorial Cedel, Barcelona, Espa-a.
Malinochka, Y.N. (1963). Austenizing gray cast iron. Met. Sci. Heat Treat. 5 (11), 640-646. https://doi.org/10.1007/BF00660555
Maroni, P.J. (1976). Templabilidad: Un método para seleccionar aceros. Editorial librería Mitre, Buenos Aires, Argentina.
Michalski, J., Wo?, P. (2011). The effect of cylinder liner surface topography on abrasive wear of piston-cylinder assembly in combustion engine. Wear 271 (3–4), 582–589. https://doi.org/10.1016/j.wear.2010.05.006
Piyapong, M. (2007). Solidification modeling of iron castings using solid cast. ProQuest, West Virginia University, USA.
Rejowski, E.D., Soares, E., Roth, I., Rudolph, S. (2012). Cylinder Liner in Ductile Cast Iron for High Loaded Combustion Diesel Engines. J. Eng. Gas Turb. Power. 134 (7), 2807–2815. https://doi.org/10.1115/1.4006071
Ruiz, J., López, V., Fernández, B.J. (1996). Effect of surface laser treatment on the microstructure and wear behavior of grey iron. Mater. Design 17 (5–6), 267–273. https://doi.org/10.1016/S0261-3069(97)00020-4
Smolijan, B., Tomasic, N., llikic, D., Felde, I., Reti, T. (2006). Application of Jominy test in 3D simulation of quenching. J. Achiev. Mater. Manuf. Eng. 17 (1–2), 281–284. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.548.9283&rep=rep1&type=pdf.
Telejko, I., Adrian, H., Skalny, K., Pakiet, M., Sta?ko, R. (2009). The investigation of hardenability of low alloy structural cast steel. J. Achiev. Mater. Manuf. Eng. 37 (2), 480–485. http://jamme.acmsse.h2.pl/papers_vol37_2/37236.pdf.
Totten, G.E., Bates, C.E., Clinton, N.A. (1993). Handbook of Quenchants and Quenching Technology. ASM International, Materials Park, Ohio, USA.
Vadiraj, A., Balachandran, G., Kamaraj, M., Kazuya, E. (2011). Mechanical and wear behavior of quenched and tempered alloyed hypereutectic gray cast iron. Mater. Design 32 (4), 2438–2443. https://doi.org/10.1016/j.matdes.2010.11.052
Valencia, A. (2009). Tecnología del tratamiento térmico de los metales. Editorial Universidad de Antioquia, Colombia.
Yamazaki, T., Shibuya, T., Jin, C.J., Kikuta, T., Nakatani, N. (2006). Lining of hydraulic cylinder made of cast iron with copper alloy. J. Mater. Process. Technol. 172 (1), 30–34. https://doi.org/10.1016/j.jmatprotec.2005.08.013
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.