Characterization and hardenability evaluation of gray cast iron used in the manufacture of diesel engine cylinder liners




Diesel engines, Engine cylinder liners, Gray cast iron, Heat Treatments, Quenching


The increment of the mechanical properties (surface hardness) of engine cylinder is one of the principal goals for foundry company, to increase the competitiveness of their products in the local and foreign market. This study focused on the characterization of the gray cast iron used in the production of engine cylinder liners and metallurgical parameters determination in the design of conventional quenching heat treatment. The characterization was performed by material hardenability evaluation using Grossmann method, and Jominy test; the austenitizing temperature and the severity of cooling medium to a proper hardening of material were selected. Results revealed that the excellent hardness value obtained is attributed to the suitable hardenability of the gray cast iron and adequate severity selection for hardening treatment.


Download data is not yet available.


Angus, H.T. (1976). Cast Iron: Physical and Engineering Properties. Second Edition, Elsevier Ltd.

ASM Handbook (1991). Heat Treating. Handbook Committee. Vol. 4, ASM International.

ASM Handbook (1992). Castings. Handbook Committee. Vol. 15, ASM International.

ASTM E3-11 (2011). Standard Guide for Preparation of Metallographic Specimens. ASTM International, West Conshohocken, PA.

ASTM A255-10 (2014). Standard Test Methods for Determining Hardenability of Steel. ASTM International, West Conshohocken, PA.

ASTM E7-15 (2015). Standard Terminology Relating to Metallography. ASTM International, West Conshohocken, PA.

ASTM E407-07 (2015). Standard Practice for Microetching Metals and Alloys, ASTM International, West Conshohocken, PA.

ASTM A247-16a (2016). Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings. ASTM International, West Conshohocken, PA.

Balachandran, G., Vadiraj, A., Kamaraj, M., Kazuya, E. (2011). Mechanical and wear behavior of alloyed gray cast iron in the quenched and tempered and austempered conditions. Mater. Design 32 (7), 4042–4049.

Bates, C.E., Totten, G.H. (1992). Quench Severity Effects on the As-Quenched Hardness of Selected Alloy Steels. Heat Treat. Met. 2, 45–48.

Brooks, C.R. (1979). Heat treatment of ferrous alloys. Editorial McGraw- Hill Book Company, USA.

Clarke, K.D., Van Tyne, C.J. (2005). Effect of Prior Microstructure and Heating Rate on Austenite Formation Kinetics in Three Steels for Induction Hardened Components. Report: Department of Metallurgical and Materials Engineering, Colorado School of Mines, USA.

Cunningham, J.L., Medlin, D.J., Krauss, G. (1999). Effects of induction hardening and prior cold work on a microalloyed medium carbon steel. J. Mater. Eng. Perform. 8 (4), 401–408.

Davis, J.R. (1996). Cast Irons ASM Specialty Handbook. ASM International, Handbook Committee.

Dimitry, V.B., Carvalho, M.M.O., de Castro, J.A., Lourenco, T.R.M. (2016). Kinetic Study on Martensite Formation in Steels 1045 and 4340 under Variable Cooling Rates. Mat. Sci. Forum 869, 550–555.

DPN (2007). Metalmecánica y Siderurgia. Agenda interna para la productividad y competitividad, Departamento Nacional de Planeación, Documento sectorial.

Ferreira, J.C. (2002). A study of cast chilled iron processing technology and wear evaluation of hardened gray iron for automotive application. J. Mater. Process. Tech. 121 (1), 94–101.

Gliner, R.E., Vybornov, V.V. (2014). Use of the Standard End Quenching Test for Predicting Heat-Hardening of Cast Iron. Metal Sci. Heat Treat. 56 (7), 424–427.

Grossman, M.A. (1942). Hardenability Calculated from Chemical Composition. AIME Transactions 150, 227–259.

Lamont, J.L. (1943). How to estimate hardening depth in bars. Iron Age 152, 64–70.

Lasheras, J.M. (1978). Tecnología del acero. Editorial Cedel, Barcelona, Espa-a.

Malinochka, Y.N. (1963). Austenizing gray cast iron. Met. Sci. Heat Treat. 5 (11), 640-646.

Maroni, P.J. (1976). Templabilidad: Un método para seleccionar aceros. Editorial librería Mitre, Buenos Aires, Argentina.

Michalski, J., Wo?, P. (2011). The effect of cylinder liner surface topography on abrasive wear of piston-cylinder assembly in combustion engine. Wear 271 (3–4), 582–589.

Piyapong, M. (2007). Solidification modeling of iron castings using solid cast. ProQuest, West Virginia University, USA.

Rejowski, E.D., Soares, E., Roth, I., Rudolph, S. (2012). Cylinder Liner in Ductile Cast Iron for High Loaded Combustion Diesel Engines. J. Eng. Gas Turb. Power. 134 (7), 2807–2815.

Ruiz, J., López, V., Fernández, B.J. (1996). Effect of surface laser treatment on the microstructure and wear behavior of grey iron. Mater. Design 17 (5–6), 267–273.

Smolijan, B., Tomasic, N., llikic, D., Felde, I., Reti, T. (2006). Application of Jominy test in 3D simulation of quenching. J. Achiev. Mater. Manuf. Eng. 17 (1–2), 281–284.

Telejko, I., Adrian, H., Skalny, K., Pakiet, M., Sta?ko, R. (2009). The investigation of hardenability of low alloy structural cast steel. J. Achiev. Mater. Manuf. Eng. 37 (2), 480–485.

Totten, G.E., Bates, C.E., Clinton, N.A. (1993). Handbook of Quenchants and Quenching Technology. ASM International, Materials Park, Ohio, USA.

Vadiraj, A., Balachandran, G., Kamaraj, M., Kazuya, E. (2011). Mechanical and wear behavior of quenched and tempered alloyed hypereutectic gray cast iron. Mater. Design 32 (4), 2438–2443.

Valencia, A. (2009). Tecnología del tratamiento térmico de los metales. Editorial Universidad de Antioquia, Colombia.

Yamazaki, T., Shibuya, T., Jin, C.J., Kikuta, T., Nakatani, N. (2006). Lining of hydraulic cylinder made of cast iron with copper alloy. J. Mater. Process. Technol. 172 (1), 30–34.



How to Cite

Castellanos-Leal, E. L., Coy, A. E., González, J. A., Vesga Rueda, O. P., & Miranda, D. A. (2017). Characterization and hardenability evaluation of gray cast iron used in the manufacture of diesel engine cylinder liners. Revista De Metalurgia, 53(3), e101.