Design of barrier-biomimetic TEOS-GPTMS multilayer coatings deposited on the Elektron 21 magnesium alloy with potential application in the manufacture of orthopaedic implants


  • Laura M. Rueda Universidad Industrial de Santander
  • Carlos A. Hernández Universidad Industrial de Santander
  • Fernando Viejo Universidad Industrial de Santander
  • Ana E. Coy Universidad Industrial de Santander
  • Jadra Mosa Instituto de Cerámica y Vidrio (CSIC)
  • Mario Aparicio Instituto de Cerámica y Vidrio (CSIC)



Bioactivity, Biomaterials, Corrosion, Magnesium alloys, Sol-gel coatings


In the present work, barrier-biomimetic multilayer coatings were synthesized via sol-gel on the commercial Elektron 21 magnesium alloy, with potential interest in the fabrication of orthopaedic temporal implants. Sol-gel synthesis was carried out from a mixture of inorganic and organic precursors, TEOS and GPTMS. Two different sols were prepared: sols employed for the design of barrier coatings (named GT) which function were to protect the magnesium alloy against corrosion; and sols containing additionally calcium nitrate (named GTCa), in different concentrations, for the design of the biomimetic coatings, which were deposited over the GT coating. The results confirmed that the GT coatings enhanced the corrosion resistance of the base alloy in Hank solution, reducing the corrosion current density in about two orders of magnitude. Further, the presence of Ca(II) in GTCa coatings promoted the formation of discontinuous film of hydroxyapatite on the surface, indicating that those coatings exhibit bioactive properties.


Download data is not yet available.


Ascencio, M., Pekguleryuz, M., Omanovic, S. (2014). An investigation of the corrosion mechanisms of WE43 Mg alloy in a modificated simulated body fluid solution: The influence of immersion time. Corros. Sci. 87, 489–503.

Ballarre, J., Manjubala, I., Schreiner, W., Orellano, J., Fratzl, P., Ceré, S. (2010). Improving the osteointegration and bone–implant interface by incorporation of bioactive particles in sol–gel coatings of stainless steel implants. Acta Biomater. 6 (4), 1601–1609. PMid:19835999

Carbajal, L., Serena, S., Caballero, A., Saínz, M.A., Detsch, R., Boccaccini, A.R. (2014). Role of ZnO additions on the ?/? phase relation in TCP based materials: Phase stability, properties, dissolution and biological response. J. Eur. Ceram. Soc. 34 (5), 1375–1385.

Carboneras, M., García-Alonso, M.C., Escudero, M.L. (2011). Biodegradation kinetics of modified magnesium-based materials in cell culture medium. Corros. Sci. 53 (4), 1433-1439.

Chen, Q., Thouas, G. (2015). Metallic implant biomaterials. Mater. Sci. Eng. R. 87, 1–57.

Contreras, G., Nieves, C., Remolina, E., Hernández, C., Liu, Z., Coy, A., Viejo, F. (2015). Síntesis y evaluación de recubrimientos híbridos sol-gel base: TEOS: GPTMS: APTES para la protección contra la corrosión de la aleación AA2124-T4 y su material compuesto AA2124-T4/25%SiCp. Rev. LatinAm. Metal. Mat. 35 (2), 222–236.

Díaz, U., Cantín, A., García, T., Corma, A. (2008). Layered hybrid materials with nanotechnological applications: use of disilane precursors as pillaring agents. Stud. Surf. Sci. Catal. 174, 337–340.

Dorozhkin, S. (2014). Calcium orthophosphate coatings in magnesium and its biodegradable alloys. Acta Biomater. 10 (7), 2919–2934. PMid:24607420

Ettarh, C., Galwey, A. (1996). A kinetic and mechanistic study of the thermal decomposition of calcium nitrate. Thermochim. Acta 288 (1–2), 203–219.

Fan, W., Du, H., An, Y., Guo, C., Wei, Y., Hou, L. (2015). Fabrication and characterization of hydroxyapatite-methylcellulose composite coating on the surface of AZ31 magnesium alloy. Mater. Lett. 152, 32–35.

Fathi, M., Doostmohammadi, A. (2009). Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. J. Mater. Process. Tech. 209 (3), 1385–1391.

Gu, X., Zheng, Y., Cheng, Y., Zhong, S., Xi, T. (2009). In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30 (4), 484–498. PMid:19000636

Han, Y., Taylor, A., Mantle, M., Knowles, K. (2007). Sol–gel-derived organic–inorganic hybrid materials. J. Non-Cryst. Solids 353 (3), 313–320.

Jones, J.R. (2013). Review of bioactive glass: From Hench to hybrids. Acta Biomater. 9 (1), 4457–4486. PMid:22922331

Kielbus, A. (2007). Microstructure and mechanical properties of Elektron 21 alloy after heat treatment. JAMME 20 (1–2), 127–130.

Kokubo, T., Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials 27 (15), 2907–2915. PMid:16448693

Liu, D-M., Yang, Q., Troczynski, T. (2002). Sol-gel hydroxyapatite coatings on stainless steel substrates. Biomaterials 23 (3), 691–698.

Maruyama, N., Mori, D., Hiromoto, S., Nakamura, M. (2011). Fatigue strength of 316L-type stainless steel in simulated body fluids. Corros. Sci. 53 (6), 2222–2227.

Mohseni, E., Zalnezhad, E., Bushroa, A.R. (2014). Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implante: A review. Int. J. Adhes. Adhes. 48, 238–257.

Murillo-Gutiérrez, N.V., Ansart, F., Bonino, J-P., Kunst, S.R., Malfatti, C.F. (2014). Architectural optimization of an epoxy-based hybrid sol-gel coating for the corrosion protection of a cast Elektron 21 magnesium alloy. Appl. Surf. Sci. 309, 62–73.

Shadanbaz, S., Dias, G. (2012). Calcium phosphate coating on magnesium alloys for biomedical applications: A review. Acta Biomater. 8 (1), 20–30. PMid:22040686

Sumita, M., Hanawa, T., Teoh, S.H. (2004). Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials: Review. Mat. Sci. Eng. C-Biomim. 24 (6–8), 753–760.

Tan, L., Wang, Q., Geng, F., Xi, X., Qiu, J., Yang, K. (2010). Preparation and characterization of Ca-P coating on AZ31 magnesium alloy. T. Nonferr. Metal. Soc. 20 (2), 648–654.

Varela, J., Reyes-Cervantes, E., Rubio-Rosas, E. (2011). Crecimiento en fluidos fisiológico simulado de hidroxiapatita sobre películas de PMMA-sílice-CaO. Superficies y Vascío 24 (3), 92–95.

Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K., Willumeit, R., Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid St. M. 12 (5–6), 63–72.

Xin, R., Leng, Y., Chen, J., Zhang, Q. (2005). A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials 26 (33), 6477–6486. PMid:15992923

Xin, Y., Hu, T., Chu, P.K. (2011). In vitro studies of biomedical magnesium alloys in simulated physiological environment: A review. Acta Biomater. 7 (4), 1452–1459. PMid:21145436

Zheng, S., Li, J. (2010). Inorganic-organic sol gel hybrid coatings for corrosion protection of metals. J. Sol-Gel Sci. Techn. 54 (2), 174–187.

Zomorodian, A., Brusciotti, F., Fernandes, A., Carmezim, M.J., Moura e Silva, T., Fernandes, J.C.S., Montemor, M.F. (2012). Anti-corrosion performance of a new silane coating for corrosion protection of AZ31 magnesium alloy in Hank's solution. Surf. Coat. Tech. 206 (21), 4368–4375.



How to Cite

Rueda, L. M., Hernández, C. A., Viejo, F., Coy, A. E., Mosa, J., & Aparicio, M. (2016). Design of barrier-biomimetic TEOS-GPTMS multilayer coatings deposited on the Elektron 21 magnesium alloy with potential application in the manufacture of orthopaedic implants. Revista De Metalurgia, 52(3), e075.




Most read articles by the same author(s)