Multispectral reflectance microscopy: Application to automated recognition of metallic ores
DOI:
https://doi.org/10.3989/revmetalm.107Keywords:
Geometallurgy, Image analysis, Metallic ores, Multispectral reflectance, Optical microscopyAbstract
The paper introduces the CAMEVA system, a multispectral reflectance microscopy system specially conceived to facilitate the identification and characterization of the mineral phases present in a polished block of metallic ores, as well as to automate the realization of different types of quantitative analyses on them. The CAMEVA system provides results similar to those of a SEM (scanning electron microscopy) system, surpassing some of its limitations, such as its rigid and costly infrastructure requirements and specialization or the difficulty of distinguishing polymorph species, but at a significantly lower cost. The tests carried out show that the system allows for automated and reliable identification of the ores of industrial interest from the multispectral information in the VNIR range (visible and near infrared, between 400 and 1000 nm) gathered in a specific database. This database, which includes 70 minerals of interest, is easily expandable.
Downloads
References
Bernhardt, H.-J., (1987). A simple, fully-automated system for ore mineral identification. Miner. Petrol. 36 (3–4), 241–245. https://doi.org/10.1007/BF01163262
Berrezueta, E., Castroviejo, R. (2007). Reconocimiento automatizado de menas metálicas mediante análisis digital de imagen: un apoyo al proceso mineralúrgico. I: ensayo metodológico. Rev. Metal. 43 (4), 294–309. https://doi.org/10.3989/revmetalm.2007.v43.i4.75
Bowie, S.H.U., Taylor, K. (1958). A system of ore mineral identification. The Mining Magazine, Published at Salisbury House, London, pp. 99, 265–277, 337–345.
Bowie, S.H.U., Simpson, P.R. (1980). The Bowie-Simpson System for the Microscopic Determination of Ore Minerals. Applied Mineralogy Group of the Mineralogical Society. McCrone Research Associates, London, p. 10
Castroviejo, R., Berrezueta, E. (2009). Reconocimiento automatizado de menas metálicas mediante análisis digital de imagen: un apoyo al proceso mineralúrgico. II: criterios metalogenéticos discriminantes. Rev. Metal. 45 (6), 439–456. https://doi.org/10.3989/revmetalm.0923
Castroviejo, R., Espí, J.A., Brea, C., Pérez-Barnuevo, L., Catalina, J.C., Segundo, F. (2013). Método para obtener imágenes multiespectrales de reflectancia absoluta. Patente Nº 201130499.
Castroviejo, R., Catalina, J.C., Bernhardt, H.-J., Pirard, E., Brea, C., Pérez-Barnuevo, L., Segundo, F., Espí, J.A. (2014). Report: Multispectral (visible and near infra-red, 400–1000 nm range) reflectance data file from common ore minerals. LMAAI, Madrid. Link IMA/COM site: http://projects.gtk.fi/com/results/reflectance_data.html.
Catalina, J.C., Alarcón, D., Prado, J.G. (1995). Automatic maceral and reflectance analysis in single seam bituminous coals. Eighth International Conference on Coal Science, Oviedo.
Catalina, J.C., Llamas, B., Prado, J.G., Borrego, A.G. (2003). An Automated Petrographic Analysis System for Coal Blends. Proceedings of the 12th International Conference on Coal Science. Cairns, Australia. PMCid:PMC314169
Criddle, A.J. (1998). Ore Microscopy and Photometry (1890–1998). In Modern Approaches to Ore and Environmental Mineralogy. Ed. Cabri, L.J. and Vaughan, D.J., COM/IMA Short Course Series, Vol. 27, Ottawa, Ontario, p. 421.
Criddle, A.J., Stanley, C.J. (1986). The Quantitative Data File for Ore Minerals of the Commission on Ore Microscopy of the International Mineralogical Association. 2nd Edition, British Museum (Natural History), London.
Criddle, A.J., Stanley, C.J. (1993). Quantitative Data File for Ore Minerals, 3rd Ed., Chapman & Hall, London. https://doi.org/10.1007/978-94-011-1486-8 PMCid:PMC182246
Figueroa, G., Moeller, K., Buhot, M., Gloy, G., Haberlah, D. (2011) Advanced discrimination of hematite and magnetite by automated mineralogy. Broekmans, M. (Ed.) Proc. 10th Int. Congress Applied Mineralogy (ICAM), Trondheim, Norway, pp. 197–204.
Font-Altaba, M. (1970). International Tables for the microscopic determination of crystalline substances absorbing in visible light. Provisional Issue IMA/COM, Dpto. de Cristalografía y Mineralogía de la Universidad de Barcelona, Spain.
Gerlitz, C.N., Leonard, B.F., Criddle, A.J. (1989). QDF database system, version 1.0: reflectance of ore minerals –a search-and-match identification system for IBM and compatible microcomputers using the IMA/COM Quantitative Data File for Ore minerals. 2nd Edition, U.S. Geological Survey, USA.
Gray, I.M., Millman, A.P. (1962). Reflection characteristics of ore minerals. Econ. Geol. 57 (3), 325–349. https://doi.org/10.2113/gsecongeo.57.3.325
Henry, N.F.M. (1977). IMA/COM Quantitative Data File, first issue. International Mineralogical Association – Commission on Ore Microscopy. Distributed by Mc Crone Research Associates Ltd., London.
McLeod, C.R., Chamberlain, J.A. (1969). Reflectivity and Vickers Microhardness of Ore Minerals – Chart and Tables. Vol. 68 (Nº 64), Editor Department of Energy, Mines and Resources, Canada.
Picot, P., Johan, Z. (1977). Atlas des Mineraux Metalliques. Vol. 90, Editor Bureau de Recherches Geologiques et Minieres, France. PMid:601737 PMCid:PMC470823
Picot, P., Johan, Z. (1982). Atlas of Ore Minerals. Elsevier, Amsterdam.
Pirard, E. (2004). Multispectral imaging of ore minerals in optical microscopy. Mineral. Mag. 68 (2), 323–333. https://doi.org/10.1180/0026461046820189
Pirard, E., Lebrun, V., Nivart, J.F. (1999). Optimal Acquisition of Video Images in Reflected Light Microscopy. European Microscopy and Analysis 60 (9), 9–11.
Pirard, E., Bernhardt, H.J., Catalina, J.C., Brea, C., Segundo, F., Castroviejo, R. (2008). From Spectrophotometry to Multispectral Imaging of Ore Minerals in Visible and Near Infrared (VNIR) Microscopy. 9th International Congress for Applied Mineralogy, Brisbane, Australia, pp. 1–6.
Sutherland, D.N., Gottlieb, P. (1991). Application of automated quantitative mineralogy in mineral processing. Miner. Eng. 4 (7–11), 753–762. https://doi.org/10.1016/0892-6875(91)90063-2
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.