Influence of the roughening method, joint configuration and adhesive thickness on the shear strength of ferritic stainless steel surfaces joined by methyl methacrylate

Authors

DOI:

https://doi.org/10.3989/revmetalm.120

Keywords:

Design of experiments, Joint configuration, Methyl methacrylate, Shear strength, Surface roughening

Abstract


Surface roughening, joint configuration, and adhesive thickness were selected as factors to analyze, by using a 23 design of experiments, the adhesive joint of AISI 430 steel using Methyl Methacrylate. Scanning electron microscopy observations, roughness-contour measurement and wettability analysis were performed on the adherents to analyze the adhesion, roughness, surface contour and shear strength on the adhesion tests. The statistical analysis yields that the most significant variable was the surface finishing for an adjusted R2 of 90%. The difference of shear stress of 20.69 and 12.67 MPa was obtained for the mechanical and chemical roughening respectively, since the difference in wettability was around 78 and 113° for the same surface finishing. According to analyze the combination of factors for a shear stress of 21.80 MPa are mechanical roughening, single lap joint and glass beads.

Downloads

Download data is not yet available.

References

Adhesive Systems Inc. (2017). Methacrylate Adhesives Bond Similar and Dissimilar Materials. Access 27 Marzo 2018. http://instantca.com/methacrylate/.

ASTM D1002-10 (2010). Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal), ASTM International, West Conshohocken, PA, USA.

ASTM D7334?08 (2013). Standard Practice for Surface Wettability of Coatings, Substrates and Pigments by Advancing Contact Angle Measurement. ASTM International, West Conshohocken, PA, USA.

AWS (2007). Welding Handook. Stainless and Heat Resistant Steels. Vol. 4, Chapter 5, American Welding Society, USA, pp. 255–318. PMCid:PMC2486344

Bauknecht, H., Borst, V., Brede, B., GroB, A., Harknensee, A., MeiB, E., Niermann, D., Peshka, P., Theuerkauff, P., Warratz, T. (2015). Adhesive Bonding Technology and Surfaces Training Handbook for European Adhesive Specialist (EAS), Bremen, Germany, p. 32.

Bergström, U., Brottare, I. (1996). Sheet Steel Handbook, Design Fabrication in high strenght steel. SSAB Tunnplat AB, pp. 64–90.

Bermejo, R., O-oro, J., García-Ledesma, R. (2008). Comportamiento a la fatiga de uniones a solape simple con adhesivo epoxi de acero y acero prepintado. Rev. Metal. 44 (4), 310–316.

Brient, A., Brissot, M., Rouxel, T., Sangleboeuf, J.C. (2011). Influence of Grinding Parameters on Glass Workpieces Surface Finish Using Response Surface Methodology. J. Manuf. Sci. Eng. 133 (4), 044501. https://doi.org/10.1115/1.4004317

Cruz, C., Hiyane, G., Mosquera-Artamonov, J.D., Salgado, J.M. (2014). Optimización del proceso de soldadura GTAW en placas de Ti6Al4V. Soldag. Insp. 19 (1), 2–9. https://doi.org/10.1590/S0104-92242014000100002

Cruz-González, C.E., Gala-Barrón, H.I., Mosquera-Artamonov, J.D., Gámez-Cuatzin, H. (2016). Efecto de la corriente pulsada en el proceso de soldadura GTAW en titanio 6Al4V con y sin metal de aporte. Rev. Metal. 52 (3), e071. https://doi.org/10.3989/revmetalm.071

Dyamenahalli, K., Famili, A., Shandas, R. (2015). Characterization of shape-memory polymers for biomedical applications. In: Shape Memory Polymers for Biomedical Applications. Elsevier, pp. 35–63. https://doi.org/10.1016/B978-0-85709-698-2.00003-9

Ebnesajjad, S., Landrock, A.H. (2009). Adhesive Applications and Bond Processes. In: Adhesives Technology Handbook. Chapter 8, Elsevier, pp. 206–234.

Ebnesajjad, S., Landrock, A.H. (2015a). Introduction and Adhesion Theories. In: Adhesives Technology Handbook. Chapter 1, Elservier, pp. 1–18. https://doi.org/10.1016/B978-0-323-35595-7.00001-2

Ebnesajjad, S., Landrock, A.H. (2015b). Material Surface Preparation Techniques. In: Adhesives Technology Handbook. Chapter 3, Elsevier, pp. 35–66. https://doi.org/10.1016/B978-0-323-35595-7.00003-6

Feng, C.-X., Kusiak, A. (2000). Robust Tolerance Synthesis With the Design of Experiments Approach. J. Manuf. Sci. Eng. 122 (3), 520–528. https://doi.org/10.1115/1.1285860

Jin, J., Shi, J. (2000). Diagnostic Feature Extraction From Stamping Tonnage Signals Based on Design of Experiments. J. Manuf. Sci. Eng. 122 (2), 360–369. https://doi.org/10.1115/1.538926

Karachalios, E.F., Adams, R.D., da Silva, F.M. (2013). Single lap joints loaded in tension with ductile steel adherends. Int. J. Adhes. Adhes. 43, 96–108. https://doi.org/10.1016/j.ijadhadh.2013.01.017

Kreibich, U.T., Marcantonio, A.F. (1987). New Developments in Structural Adhesives for the Automotive Industry. J. Adhesion 22 (2), 153–165. https://doi.org/10.1080/00218468708074998

Kubiak, K.J., Mathia, T.G., Wilson, M.C. (2009). Methology for metrology of wettability versus roughness of engineering surfaces. Proceeding of 14th International Congress of Metrology, Paris.

Kubiak, K.J., Wilson, M.C., Mathia, T.G., Carval, P. (2011a). Wettability versus roughness of engineering surfaces. Wear 271 (3–4), 523–528. https://doi.org/10.1016/j.wear.2010.03.029

Kubiak, K.J., Wilson, M.C., Mathia, T., Carras, S. (2011b). Dynamics of contact line motion during the wetting of rough surfaces and correlation with topographical surface parameters. Scanning 33 (5), 370–377. https://doi.org/10.1002/sca.20289 PMid:21938731

Lanzotti, A., Martorelli, M., Staiano, G. (2015). Understanding Process Parameter Effects of RepRap Open-Source Three-Dimensional Printers Through a Design of Experiments Approach. J. Manuf. Sci. Eng. 137 (1), 011017. https://doi.org/10.1115/1.4029045

Mori, K.I., Bay, N., Fratini, L., Micari, F., Tekkaya, A.E. (2013). Joining by plastic deformation. CIRP Annals 62 (2), 673–694. https://doi.org/10.1016/j.cirp.2013.05.004

Pappas, D.D., Bujanda, A., Yim, J.H., Stawhecker, K., Orlicki, J., Demaree, J., Jensen, R. (2009). Chemical and Topological Study of Atmospheric Pressure Plasma Treated Fibers and Polymer Films. Technical Conference, 52nd, Society of Vacuum Coaters, Santa Clara, CA.

Park, K.D., Kim, J., Yang, S.J., Yao, A., Park, J.B. (2003). Preliminary study of interfacial shear strength between PMMA precoated UHMWPE acetabular cup and PMMA bone cement. J. Biomed. Mater. Res. B 15 (65), 272–279. https://doi.org/10.1002/jbm.b.10006 PMid:12687720

Petrie, E.M. (2007). Theories of Adhesion. In: Handbook of Adhesives and Sealants. Chapter 2, New York, USA, Mac Graw-Hill, pp. 39–57.

Pocius, A.V. (2012). The Relationship of Surface Science and Adhesion Science. In: Adhesion and Adhesives Technology. Chapter 6, Hanser Publishers, pp. 145–179. https://doi.org/10.3139/9783446431775.006

Shanahan, M., Possart, W. (2011). Wetting of Solids. In: Handbook of Adhesion Technology. Adams, R.D., da Silva, L., Oschner, A. (Eds), Springer, Berlin, Heidelberg, pp. 65–91. https://doi.org/10.1007/978-3-642-01169-6_4

Shimizu, K., Malmos, K., Hjarbæk, A., Uttrup, S., Daasberj, K., Hinge, M. (2014). Improved Adhesion Between PMMA and Stainless Steel Modified with PMMA Brushes. ACS Appl. Mater. Inter. 6 (23), 21308–21315. https://doi.org/10.1021/am5062823 PMid:25348044

Published

2018-06-30

How to Cite

Cruz-González, C. E., Mosquera-Artamonov, J. D., Santillán, S. D., & Gámez-Cuatzin, H. (2018). Influence of the roughening method, joint configuration and adhesive thickness on the shear strength of ferritic stainless steel surfaces joined by methyl methacrylate. Revista De Metalurgia, 54(2), e120. https://doi.org/10.3989/revmetalm.120

Issue

Section

Articles

Most read articles by the same author(s)