Development of the α phase in a series of Al-Cu-Zn alloys according to their size and mechanical properties generated by increased Al-Cu and aging treatment




Age-hardening, Equilibrium state, Gibbs free energy, Heat treatment, Ternary alloy, Young’s modulus


The α phase of the ternary Al-Cu-Zn alloy in equilibrium state have a specific shape and size, according to their mechanical properties, therefore is possible of according to area and perimeter of the α phase to obtain the hardness of this alloy with an error between 2% to 9% as the ternary alloy approach an equilibrium state. For this we are analyzed and characterized 7 samples belonging to the system Al-Cu-Zn, which had an increase of Cu and Al. Each of these samples had heat treatment with finality to be close and far of equilibrium state. The samples are characterized by DRX, SEM, OM and nanohardness, in order to see the phase change in the samples, we developed a modelling in 3-D in Thermocal© to know the eutectic point. Therefore, the objective of this work was to see the metallographic change and with this to obtain a simple equation to obtain the mechanical properties by a single metallographic.


Download data is not yet available.


Börnstein, L. (2005). Ternary Alloy System: Phase Diagrams, Crystallographic and Thermodynamic Data. Vol. 11, Editors: G. Effenberg, S. Ilyenko, Springer, New York, USA, pp. 183–205.

Chandra, B.T., Sanjeevamurthy, Shivashankar, H.S. (2017). Effect of heat treatment on hardness of Al7075-Albite particulate composites. Mater. Today-Proc. 4 (10), 10786–10791.

Di Cocco, V., Iacoviello, F., Natali, S., Volpe, V. (2014). Fatigue crack behavior on a Cu-Zn-Al- SMA. Frattura ed Integritá Strutturale 8 (30), 454–461.

Flores Ramos, A., Dorantes Rosales, H.J., López Hirata, V.M., Hernandez Santiago, F., González Velázquez, J.L., Torres Castillo, A., Rivas López, D.I. (2014). Transformaciones de fase en aleaciones Zn-22%Al-2%Cu y Zn-22%Al-2%-X(X=1,2 y 3%Ag) envejecidas isotérmicamente. Rev. Metal. 50 (4), e026.

Koster, W., Moeller, K. (1941). The constitution and volume changes of Zn-Cu aluminium alloys. Z. Metallkd. 33, 278–283.

Murphy, S. (1975). The structure of the ?´ phase in the system Al-Cu-Zn. Met. Sci. 9 (1), 163–168.

Murphy, S. (1980). Solid-phase reactions in the low-copper part of the Al-Cu-Zn system. Z. Metallkd. 71 (2), 96–102.

Otsuka, K., Ren, X. (2005). Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50 (5), 511–678.

Sabih, A., Radziszewski, P., Mullany, I. (2017). Investigating grinding media differences in microstructure, hardness, abrasion and fracture toughness. Miner. Eng. 103–104, 43–53.

Sava?kan, T., Murphy, S. (1990). Decomposition of Zn-Al alloys on quench aging. Mater. Sci. Tech. 6 (8), 695–704.

Sava?kan T., Hekimo?lu, A.P. (2014). Microestructure and Mechanical properties of Zn-15Al based ternary and quaternary alloys. Mat. Sci. Eng. A-Struct. 603, 52–57.

Sava?kan, T., Pürçek, G., Murphy, S. (2002). Sliding wear of cast zinc-based alloy bearings under static and dynamic loading conditions. Wear 252 (9–10), 693–703.

Song-Mao, L., Schmid-Fetzer, R. (2015). Thermodynamic assessment of the Al-Cu-Zn system, part II: Cu-Zn binary system. Calphad 51, 252–260.

Villegas, C.J.D. (2012). Efecto de la composición química y microestructuras sobre las propiedades mecánicas en aleaciones Zn-Al-Cu, Tesis de Doctorado. Escuela Superior de Ingeniería Química e Industrias Extractivas ESIQIE, México.

Villegas-Cárdenas, J.D., Saucedo-Mu-oz, M.L., López Hirata, V.M., Dorantes Rosales, H.J. (2014). Predicción de la dureza de aleaciones Al-Cu-Zn en estado de colada y templado. Rev. Metal. 50 (2), e015.



How to Cite

Villegas-Cárdenas, J. D., López-Hirata, V., Saucedo-Muñoz, M., Camarillo Villegas, A., & Morales Rodríguez, M. (2018). Development of the α phase in a series of Al-Cu-Zn alloys according to their size and mechanical properties generated by increased Al-Cu and aging treatment. Revista De Metalurgia, 54(3), e126.




Most read articles by the same author(s)