Effect of replacement of vanadium by iron on the electrochemical behaviour of titanium alloys in simulated physiological media

Authors

  • D. Mareci Technical University of Iasi, Faculty of Chemical Engineering
  • V. Lucero Las Palmas de Gran Canaria University, Dept. Mechanical Engineering
  • J. Mirza Las Palmas de Gran Canaria University, Dept. Mechanical Engineering

DOI:

https://doi.org/10.3989/revmetalm.0750

Keywords:

Titanium, Alloys, Biocompatibility, Corrosion, Polarization, Imp

Abstract


The electrochemical behaviour of Ti6Al4V, Ti6Al3.5Fe and Ti5Al2.5Fe alloys has been evaluated in Ringer’s solution at 25 °C. The effect of the substitution of vanadium in Ti6Al4V alloy has been specifically addressed. The evaluation of the corrosion resistance was carried out through the analysis of the open circuit potential variation with time, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) tests. Very low current densities were obtained (order of nA/cm2) from the polarization curves and EIS, indicating a typical passive behaviour for all investigated alloys. The EIS results exhibited relative capacitive behaviour (large corrosion resistance) with phase angle close to –80° and relative high impedance values (order of 105 Ω•cm2) at low and medium frequencies, which are indicative of the formation of a highly stable film on these alloys in Ringer’s solution. In conclusion, the electrochemical behaviour of Ti6Al4V is not affected by the substitution of vanadium with iron.

Downloads

Download data is not yet available.

References

[1] T. Leuca, Electromagnetic field and thermal coupled field. Eddy currents (in Romanian), Editura Mediamira, Cluj-Napoca, Romania, 1996, pp. 16-23 and 78-81.

[2] I. Sora, N. Golovanov, L. Cantemir, N. Mogoreanu, M. Chindris, M. Ungureanu, V. Fireteanu, D. Ioachim, Gh. Floriganta and R. Popa, Electrothermal conversion and electrotechnologies, vol. 1 (in Romanian), EdituraTehnica, Bucharest, Romania, 1997, pp. 274-298.

[3] Y. Pleshivtseva, Int. J.Mater. Prod. Technol. 29 (2007) 137-148. doi:10.1504/IJMPT.2007.013121

[4] A. Bermúdez, D. Gómez, M. C. Muñiz and P. Salgado, Int. J. Numer.Meth. Eng. 71 (2007) 879-882. doi:10.1002/nme.2140

[5] A. Bermúdez, D. Gómez, M. Muñiz and P. Salgado, Adv. Comput.Math. 26 (2007) 39-62. doi:10.1007/s10444-005-7470-9

[6] F. Bay, V. Labbé and Y. Favennec, Int. J.Mater. Prod. Technol. 29 (2007) 52-69. doi:10.1504/IJMPT.2007.013130

[7] F. Bay, V. Labbé, Y. Favennec and J. L. Chenot, Int. J. Numer. Meth. Eng. 58 (2003) 839-867. doi:10.1002/nme.796

[8] K. Kurek and D.M. Dolega, Int. J.Mater. Prod. Technol. 29 (2007) 84-102. doi:10.1504/IJMPT.2007.013132

[9] J. Grum, Int. J.Mater. Prod. Technol. 29 (2007) 211-227. doi:10.1504/IJMPT.2007.013136

[10] R. Hiptmair and O. Sterz, Int. J. Numer.Model. 18 (2005) 1-21. doi:10.1002/jnm.555

[11] A. Masserey, J. Rappaz, R. Rozsnyo, M. Swierkosz, J. Comput. Phys., 205 (2005) 48-71. doi:10.1016/j.jcp.2004.10.035

[12] V. Rudnev, Int. J. Mater. Prod. Technol. 29 (2007) 43-51. doi:10.1504/IJMPT.2007.013119

[13] N. Mole and B. Stok, 8th Seminar of the International Federation for Heat Treatment and Surface Engineering – IFHTSE2001 Dubrovnik, Croatia, 2001.

[14] A. Alonso Rodriguez, R. Hiptmair and A. Valli, J. Numer. Anal. 24 (2004) 255–271. doi:10.1093/imanum/24.2.255

[15] V. Fireteanu and T. Tudorache, Int. J. Comput Math. Electr. Electron. Eng. 22 (2003) 68-78.[ doi:10.1108/03321640310452178

[16] Y. Favennec, V. Labbé and F. Bay, J. Comput. Phys. 187 (2003) 68-94. doi:10.1016/S0021-9991(03)00081-0

[17] P. D. Barba, A. Savini, F. Dughiero and S. Lupi, Int. J. Comput. Math. Electr. Electron. Eng. 22 (2003) 111-122. doi:10.1108/03321640310452213

[18] P. D. Barba, B. Forghani and D. A. Lowther, COMPEL: Int. J. ComputMath. Electr. Electron. Eng. 24 (2005) 271-280. doi:10.1108/03321640510571291

[19] O. Bodart, A. Boureau and R. Touzani, Appl. Math. Model. 25 (2001) 697-712. doi:10.1016/S0307-904X(01)00007-5

[20] B. Drobenko, O. Hachkevych and T. Kournyts’kyi, Int. J. Heat Mass Transfer. 50 (2007) 616-624. doi:10.1016/j.ijheatmasstransfer.2006.07.013

[21] J. Grum, Int. J.Mater. Prod. Technol. 29 (2007) 200-210. doi:10.1504/IJMPT.2007.013123

[22] A.Masserey, R. Rozsnyo, J. Rappaz, R. Touzani, Int. J. Appl. Electrom. Mech. 19 (2004) 51-56.

[23] J. Zgraja, Int. J. Comput.Math. Electr. Electron. Eng. 24 (2005) 305-313. doi:10.1108/03321640510571327

[24] C. Parietti and J. Rappaz, Math. Mod. Meth. Appl. Sci. 9 (1999) 1333-1350. doi:10.1142/S0218202599000592

[25] Flux Magazine, Cedrat, no 51, June 2006, pp. 8-9.

[26] http://www.arc.ro Products catalogue, ARC Brasov, 2002.

[27] A. Iagar, PhD Thesis, Faculty of Electrical Engineering, PolitehnicaUniversity of Timisoara, 2005.

[28] I. Sora, A. Iagar, N. Rusu, D. Radu and C. Panoiu, Rev. Roum. Sci. Technol. Electrotechn. Energ. 2 (2006) 169-182.

[29] http://www.cedrat.com FLUX 2D Version 7.40 – User’s guide, Cedrat, 1999.

Downloads

Published

2009-02-28

How to Cite

Mareci, D., Lucero, V., & Mirza, J. (2009). Effect of replacement of vanadium by iron on the electrochemical behaviour of titanium alloys in simulated physiological media. Revista De Metalurgia, 45(1), 32–41. https://doi.org/10.3989/revmetalm.0750

Issue

Section

Articles