The effect of precipitation of metastable phases on the thermophysical and mechanical properties of the EN AW-6082 alloy
DOI:
https://doi.org/10.3989/revmetalm.156Keywords:
Aging, Aluminum alloys, EN AW-6082, Heat treatment, Thermal propertiesAbstract
The effect of precipitation of metastable phases on the thermophysical and mechanical properties of the EN AW-6082 alloy was studied in this paper. After solid solution treatment and quenching in ice water samples were subjected to DSC analysis and thermal investigation with the aim to define optimal temperatures for isochronal annealing. Isochronal annealing was conducted at temperatures ranging from 160–330 °C for two annealing times – 30 and 60 minutes. Electrical conductivity, hardness, microhardness and structural properties were investigated during the isochronal aging treatment. Mechanical properties achieved peak values during aging at 230 °C for 30 minutes and at 220 °C for 60 minutes, respectively. Electrical conductivity gradually increased with an increase in aging temperature due to precipitation from the solid solution. Microstructural investigations by SEM-EDS confirmed the existence of precipitated phases and their distribution throughout the investigated samples.
Downloads
References
Abid, T., Boubertakh, A., Hamamda, S. (2010). Effect of pre-aging and maturing on the precipitation hardening of an Al-Mg-Si alloy. J. Alloys Compd. 490 (1-2), 166-169. https://doi.org/10.1016/j.jallcom.2009.10.096
Acosta, G., Veleva, L. (2018). Mapping initial stages of localized corrosion of AA6061-T6 in diluted substitute ocean water by LEIS and SKP. Rev. Metal. 54 (4), e134. https://doi.org/10.3989/revmetalm.134
ASTM E384-17 (2017). Standard Test Method for Microindentation Hardness of Materials, ASTM Intenational, West Conshohocken, PA, USA.
Birol, Y. (2006). The effect of processing and Mn content on the T5 and T6 properties of AA6082 profiles. J. Mater. Process. Tech. 173 (1), 84-91. https://doi.org/10.1016/j.jmatprotec.2005.09.029
Birol, Y. (2013). Precipitation during homogenization cooling in AlMgSi alloys. Trans. Nonferr. Metal. Soc. China 23 (7), 1875-1881. https://doi.org/10.1016/S1003-6326(13)62672-2
Choi, S.W., Kim, Y.M., Lee, K.M., Cho, H.S., Hong, S.K., Kim, Y.C., Kang, C.S., Kumai, S. (2014). The effects of cooling rate and heat treatment on mechanical and thermal characteristics of Al-Si-Cu-Mg foundry alloys. J. Alloys Compd. 617, 654-659. https://doi.org/10.1016/j.jallcom.2014.08.033
Choi, S.W., Cho, H.S., Kang, C.S., Kumai, S. (2015). Precipitation dependence of thermal properties for Al-Si-Mg-Cu-(Ti) alloy with various heat treatment. J. Alloys Compd. 647, 1091-1097. https://doi.org/10.1016/j.jallcom.2015.05.201
Choi, S.W., Kim, Y.M., Kim, Y.C. (2019). Influence of precipitation on thermal diffusivity of Al-6Si-0.4Mg-0.9Cu-(Ti) alloys. J. Alloys Compd. 775, 132-137. https://doi.org/10.1016/j.jallcom.2018.10.068
Cui, L., Liu, Z., Zhao, X., Tang, J., Liu, K., Liu, X., Qian, C. (2014). Precipitation of metastable phases and its effect on electrical resistivity of Al-0.96Mg2Si alloy during aging. Trans. Nonferr. Metal. Soc. China 24 (7), 2266-2274. https://doi.org/10.1016/S1003-6326(14)63343-4
Edwards, G.A., Stiller, K., Dunlop, G.L., Couper, M.J. (1998). The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 46 (11), 3893-3904. https://doi.org/10.1016/S1359-6454(98)00059-7
EN 755-2 (2016). Aluminium and aluminium alloy - Extruded rod/bar, tube and profiles. European Committee for Standardization.
Gupta, A.K., Lloyd, D.J., Court, S.A. (2001). Precipitation hardening in Al-Mg-Si alloys with and without excess Si. Mat. Sci. Eng. A 316 (1-2), 11-17. https://doi.org/10.1016/S0921-5093(01)01247-3
Karabay, S. (2006). Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors. Mater. Design 27 (10), 821-832. https://doi.org/10.1016/j.matdes.2005.06.005
Kim, Y.M., Choi, S.W., Kim, Y.C., Kang, C.S., Hong, S.K. (2018). Influence of the Precipitation of Secondary Phase on the Thermal Diffusivity Change of Al-Mg2Si Alloys. Appl. Sci. 8 (11), 2039. https://doi.org/10.3390/app8112039
Marioara, C.D., Andersen, S.J., Jansen, J., Zandbergen, H.W. (2001). Atomic model for GP-zones in a 6082 Al-Mg-Si system. Acta Mater. 49 (2), 321-328. https://doi.org/10.1016/S1359-6454(00)00302-5
Marioara, C.D., Andersen, S.J., Jansen, J., Zandbergen, H.W. (2003). The influence of temperature and storage time at RT on nucleation of the ?" phase in a 6082 Al-Mg-Si alloy. Acta Mater. 51 (3), 789-796. https://doi.org/10.1016/S1359-6454(02)00470-6
Marioara, C.D., Nordmark, H., Andersen, S.J., Holmestad, R. (2006). Post-?" phases and their influence on microstructure and hardness in 6xxx Al-Mg-Si alloys. J. Mater. Sci. 41 (2), 471-478. https://doi.org/10.1007/s10853-005-2470-1
Prabhu, T.R. (2017). Effects of ageing time on the mechanical and conductivity properties for various round bar diameters of AA 2219 Al alloy. Eng. Sci. Technol. Int. J. 20 (1), 133-142. https://doi.org/10.1016/j.jestch.2016.06.003
Shang, B.C., Yin, Z.M., Wang, G., Liu, B., Huang, Z.Q. (2011). Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy. Mater. Design 32 (7), 3818-3822. https://doi.org/10.1016/j.matdes.2011.03.016
Tritt, T.M. (2004). Thermal Conductivity: Theory, Properties and Applications. Kluwer Academic/ Plenum Publisher, New York.
Vedani, M., Angella, G., Bassani, P., Ripamonti, D., Tuissi, A. (2007). DSC analysis of strengthening precipitates in ultrafine Al-Mg-Si alloys. J. Therm. Anal. Calorim. 87 (1), 277-284. https://doi.org/10.1007/s10973-006-7837-2
Vishwakarma, D.K., Kumar, N., Padap, A.K. (2017). Modelling and optimization of aging parameters for thermal properties of Al 6082 alloy using response surface methodology. Mater. Res. Express 4 (4), 046502. https://doi.org/10.1088/2053-1591/aa68c1
Zhang, C., Du, Y., Liu, S, Liu, Y., Sundman, B. (2016). Thermal conductivity of Al-Cu-Mg-Si alloys: Experimental measurement and CALPHAD modeling. Thermochim. Acta 635, 8-16. https://doi.org/10.1016/j.tca.2016.04.019
Zhen, L., Fei, W.D., Kang, S.B., Kim, H.W. (1997). Precipitation behaviour of Al-Mg-Si alloys with high silicon content. J. Mater. Sci. 32 (7), 1895-1902. https://doi.org/10.1023/A:1018569226499
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.