Quasi-static and dynamic analysis of single-layer sandwich structures of APM foam spheroid elements in-situ foamed with marble
DOI:
https://doi.org/10.3989/revmetalm.159Keywords:
APMs, Foam, Marble, Porosity, Powder metallurgy, Sandwich PanelAbstract
In the present investigation, an experimental design of hybrid structures based on advanced pore morphology (APM) Al foam spheroid elements is studied. The energy absorption capacities of three configurations is assessed for both quasi-static and dynamic compressive loads. To this end experimental tests were performed by means of a universal testing machine using a 100 kN load cell (accuracy of 0.1%) and a drop weigh tower in a range of impactor masses varying from 2.2 to 23.12 Kg. The three types of samples explored are the following: foam spheroid elements, sandwich panel filled with a single-layer of APM and thin-wall Al hollow structure filled with free-bonded APM. The compressive testing assessment of hybrid structures based on APM Al foam spheroid elements showed excellent improvements on energy absorption capacity against to Al foam conventional structures. This capacity is led by both the bonding agent and friction effects. The foaming agent applied in this study, white marble, is presented as a functional and low-cost alternative to titanium hydride.
Downloads
References
Aly, M.S. (2007). Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures: Experimental results. Mater. Lett. 61 (14-15), 3138-3141. https://doi.org/10.1016/j.matlet.2006.11.046
Baumeister J., Banhart, J., Weber, M. (1997). Metallischer Verbundwerkstoff und Verfahren zu seiner Herstellung, Patente Alemana DE 4426627.
Banhart, J., Ashby, M., Fleck, N. (1999). Metal foams and porous metal structures. Conference on Metal Foams and Porous Metal Structures, 14th - 16th, Verlag MIT Publishing, Bremen.
Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46 (6), 559-632. https://doi.org/10.1016/S0079-6425(00)00002-5
Duarte, I., Vesenjak, M., Krstulović-Opara, L., Ren, Z. (2015). Compressive performance evaluation of APM (Advanced Pore Morphology) foam filled tubes. Compos. Struct. 134, 409-420. https://doi.org/10.1016/j.compstruct.2015.08.097
Elnasri, I., Zhao, H. (2016). Impact perforation of sandwich panels with aluminum foam core: a numerical and analytical study. Int. J. Impact Eng. 96, 50-60. https://doi.org/10.1016/j.ijimpeng.2016.05.013
Fernández, P., Cruz, L.J., Coleto, J. (2008). Procesos de fabricación de metales celulares. Parte I: Procesos por vía líquida. Rev. Metal. 44 (6), 540-555. https://doi.org/10.3989/revmetalm.0767
Fernández, P., Cruz, L.J., Coleto, J. (2009). Procesos de fabricación de metales celulares. Parte II: Vía sólida, deposición de metales, otros procesos. Rev. Metal. 45 (2), 124-142. https://doi.org/10.3989/revmetalm.0806
Fiedler, T., Sulong, M.A., Vesenjak, M., Higa, Y., Belova, I.V., Öchsner, A., Murch, G.E. (2014). Determination of the thermal conductivity of periodic APM foam models. Int. J. Heat Mass Tran. 73, 826-833. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.056
Gibson, L.J. (2003). Cellular solids. MRS Bull. 28 (4), 270-274. https://doi.org/10.1557/mrs2003.79
Gibson, L.J. (2012). The hierarchical structure and mechanics of plant materials. J. Roy. Soc. Interface 9 (76), 2749-2766. https://doi.org/10.1098/rsif.2012.0341 PMid:22874093 PMCid:PMC3479918
Hammel, E.C., Ighodaro, O.R., Okoli, O.I. (2014). Processing and properties of advanced porous ceramics: An application-based review. Ceram. Int. 40 (10), 15351-15370. https://doi.org/10.1016/j.ceramint.2014.06.095
Hazizan, M.A., Cantwell, W.J. (2002). The low velocity impact response of foam-based sandwich structures. Compos. Part B-Eng. 33 (3), 193-204. https://doi.org/10.1016/S1359-8368(02)00009-4
Hohe, J., Hardenacke, V., Fascio, V., Girard, Y., Baumeister, J., Stöbener, K., Weise, J., Lehmhus, D., Pattofatto, S., Zeng, H., Zhao, H., Calbucci, V., Rustichelli, F., Fiori, F. (2012). Numerical and experimental design of graded cellular sandwich cores for multi-functional aerospace applications. Mater. Design 39, 20-32. https://doi.org/10.1016/j.matdes.2012.01.043
Hou, W., Zhu, F., Lu, G., Fang, D.N. (2010). Ballistic impact experiments of metallic sandwich panels with aluminium foam core. Int. J. Impact Eng. 37 (10), 1045-1055. https://doi.org/10.1016/j.ijimpeng.2010.03.006
Jing, L., Xi, C., Wang, Z., Zhao, L. (2013). Energy absorption and failure mechanism of metallic cylindrical sandwich shells under impact loading. Mater. Design 52, 470-480. https://doi.org/10.1016/j.matdes.2013.05.090
Kovačič, A., Ren, Z. (2016). On the porosity of advanced pore morphology structures. Compos. Struct. 158, 235-244. https://doi.org/10.1016/j.compstruct.2016.09.046
Krstulović-Opara, L., Vesenjak, M., Duarte, I., Ren, Z., Domazet, Ž. (2016). Infrared thermography as a method for energy absorption evaluation of metal foams. Mater. Today-Proc. 3 (4), 1025-1030. https://doi.org/10.1016/j.matpr.2016.03.041
Li, Z., Chen, X., Jiang, B., Lu, F. (2016). Local indentation of aluminum foam core sandwich beams at elevated temperatures. Compos. Struct. 145, 142-148. https://doi.org/10.1016/j.compstruct.2016.02.083
Li, Z., Zheng, Z., Yu, J., Lu, F. (2017). Deformation and perforation of sandwich panels with aluminum-foam core at elevated temperatures. Int. J. Impact Eng. 109, 366-377. https://doi.org/10.1016/j.ijimpeng.2017.07.001
Liu, R., Xu, T., Wang, C.A. (2016). A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceram. Int. 42 (2), 2907-2925. https://doi.org/10.1016/j.ceramint.2015.10.148
Onck, P.R. (2003). Scale effects in cellular metals. MRS bull. 28 (4), 279-283. https://doi.org/10.1557/mrs2003.81
Radziszewski, L., Saga, M. (2017). Modeling of non-elastic properties of polymeric foams used in sports helmets. Procedia Engineer. 177, 314-317. https://doi.org/10.1016/j.proeng.2017.02.231
Stöbener, K., Baumeister, J., Rausch, G., Busse, M. (2007). Metal foams with advanced pore morphology (APM). High Temp. Mat. Pr-ISR 26 (4), 231-238. https://doi.org/10.1515/HTMP.2007.26.4.231
Sun, Y., Li, Q.M. (2018). Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. Int. J. Impact Eng. 112, 74-115. https://doi.org/10.1016/j.ijimpeng.2017.10.006
Ulbin, M., Borovinšek, M., Higa, Y., Shimojima, K., Vesenjak, M., Ren, Z. (2014). Internal structure characterization of AlSi7 and AlSi10 advanced pore morphology (APM) foam elements. Mater. Lett. 136, 416-419. https://doi.org/10.1016/j.matlet.2014.08.056
Uzun, A., Turker, M. (2014). The effect of production parameters on the foaming behavior of spherical-shaped aluminum foam. Mater. Res. 17 (2), 311-315. https://doi.org/10.1590/S1516-14392014005000006
Uzun, A. (2017). Compressive Crush Performance of Square Tubes Filled with Spheres of Closed-Cell Aluminum Foams. Arch. Metall. Mater. 62 (3), 1755-1760. https://doi.org/10.1515/amm-2017-0267
Vesenjak, M., Borovinšek, M., Fiedler, T., Higa, Y., Ren, Z. (2013). Structural characterisation of advanced pore morphology (APM) foam elements. Mater. Lett. 110, 201-203. https://doi.org/10.1016/j.matlet.2013.08.026
Woesz, A., Stampfl, J., Fratzl, P. (2004). Cellular solids beyond the apparent density-an experimental assessment of mechanical properties. Adv. Eng. Mater. 6 (3), 134-138. https://doi.org/10.1002/adem.200300529
Xi, H., Tang, L., Yu, J., Zhang, X., Xie, B., Liu, Y., Jiang, Z., Liu, Z. (2015). Low velocity penetration mechanical behaviors of aluminum foam sandwich plates at elevated temperature. Int. J. Struct. Stab. Dy. 15 (4), 1450063. https://doi.org/10.1142/S0219455414500631
Xi, H., Tang, L., Luo, S., Liu, Y., Jiang, Z., Liu, Z. (2017). A numerical study of temperature effect on the penetration of aluminum foam sandwich panels under impact. Compos. Part B-Eng. 130, 217-229. https://doi.org/10.1016/j.compositesb.2017.07.044
Yu, J.L., Wang, X., Wei, Z.G., Wang, E.H. (2003). Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core. Int. J. Impact Eng. 28 (3), 331-347. https://doi.org/10.1016/S0734-743X(02)00053-2
Zhao, H., Elnasri, I., Girard, Y. (2007). Perforation of aluminium foam core sandwich panels under impact loading - An experimental study. Int. J. Impact Eng. 34 (7), 1246-1257. https://doi.org/10.1016/j.ijimpeng.2006.06.011
Zhu, L., Guo, K., Li, Y., Yu, T.X., Zhou, Q. (2016). Impact Resistance of Aluminium Foam Sandwich Plate under Low Temperatures. The 2nd International Conference in Sports Science & Technology, Singapore.
Zhu, L., Guo, K., Li, Y., Yu, T.X., Zhou, Q. (2018). Experimental study on the dynamic behaviour of aluminium foam sandwich plates under single and repeated impacts at low temperature. Int. J. Impact Eng. 114, 123-132. https://doi.org/10.1016/j.ijimpeng.2017.12.001
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.