Quasi-static and dynamic analysis of single-layer sandwich structures of APM foam spheroid elements in-situ foamed with marble





APMs, Foam, Marble, Porosity, Powder metallurgy, Sandwich Panel


In the present investigation, an experimental design of hybrid structures based on advanced pore morphology (APM) Al foam spheroid elements is studied. The energy absorption capacities of three configura­tions is assessed for both quasi-static and dynamic compressive loads. To this end experimental tests were per­formed by means of a universal testing machine using a 100 kN load cell (accuracy of 0.1%) and a drop weigh tower in a range of impactor masses varying from 2.2 to 23.12 Kg. The three types of samples explored are the following: foam spheroid elements, sandwich panel filled with a single-layer of APM and thin-wall Al hollow structure filled with free-bonded APM. The compressive testing assessment of hybrid structures based on APM Al foam spheroid elements showed excellent improvements on energy absorption capacity against to Al foam conventional structures. This capacity is led by both the bonding agent and friction effects. The foaming agent applied in this study, white marble, is presented as a functional and low-cost alternative to titanium hydride.


Download data is not yet available.


Aly, M.S. (2007). Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures: Experimen­tal results. Mater. Lett. 61 (14-15), 3138-3141. https://doi.org/10.1016/j.matlet.2006.11.046

Baumeister J., Banhart, J., Weber, M. (1997). Metallischer Verbundwerkstoff und Verfahren zu seiner Herstellung, Patente Alemana DE 4426627.

Banhart, J., Ashby, M., Fleck, N. (1999). Metal foams and porous metal structures. Conference on Metal Foams and Porous Metal Structures, 14th - 16th, Verlag MIT Publishing, Bremen.

Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46 (6), 559-632. https://doi.org/10.1016/S0079-6425(00)00002-5

Duarte, I., Vesenjak, M., Krstulović-Opara, L., Ren, Z. (2015). Compressive performance evaluation of APM (Advanced Pore Morphology) foam filled tubes. Compos. Struct. 134, 409-420. https://doi.org/10.1016/j.compstruct.2015.08.097

Elnasri, I., Zhao, H. (2016). Impact perforation of sandwich panels with aluminum foam core: a numerical and ana­lytical study. Int. J. Impact Eng. 96, 50-60. https://doi.org/10.1016/j.ijimpeng.2016.05.013

Fernández, P., Cruz, L.J., Coleto, J. (2008). Procesos de fab­ricación de metales celulares. Parte I: Procesos por vía líquida. Rev. Metal. 44 (6), 540-555. https://doi.org/10.3989/revmetalm.0767

Fernández, P., Cruz, L.J., Coleto, J. (2009). Procesos de fabri­cación de metales celulares. Parte II: Vía sólida, deposición de metales, otros procesos. Rev. Metal. 45 (2), 124-142. https://doi.org/10.3989/revmetalm.0806

Fiedler, T., Sulong, M.A., Vesenjak, M., Higa, Y., Belova, I.V., Öchsner, A., Murch, G.E. (2014). Determination of the thermal conductivity of periodic APM foam models. Int. J. Heat Mass Tran. 73, 826-833. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.056

Gibson, L.J. (2003). Cellular solids. MRS Bull. 28 (4), 270-274. https://doi.org/10.1557/mrs2003.79

Gibson, L.J. (2012). The hierarchical structure and mechanics of plant materials. J. Roy. Soc. Interface 9 (76), 2749-2766. https://doi.org/10.1098/rsif.2012.0341 PMid:22874093 PMCid:PMC3479918

Hammel, E.C., Ighodaro, O.R., Okoli, O.I. (2014). Processing and properties of advanced porous ceramics: An applica­tion-based review. Ceram. Int. 40 (10), 15351-15370. https://doi.org/10.1016/j.ceramint.2014.06.095

Hazizan, M.A., Cantwell, W.J. (2002). The low velocity impact response of foam-based sandwich structures. Compos. Part B-Eng. 33 (3), 193-204. https://doi.org/10.1016/S1359-8368(02)00009-4

Hohe, J., Hardenacke, V., Fascio, V., Girard, Y., Baumeister, J., Stöbener, K., Weise, J., Lehmhus, D., Pattofatto, S., Zeng, H., Zhao, H., Calbucci, V., Rustichelli, F., Fiori, F. (2012). Numerical and experimental design of graded cellular sandwich cores for multi-functional aerospace applica­tions. Mater. Design 39, 20-32. https://doi.org/10.1016/j.matdes.2012.01.043

Hou, W., Zhu, F., Lu, G., Fang, D.N. (2010). Ballistic impact experiments of metallic sandwich panels with aluminium foam core. Int. J. Impact Eng. 37 (10), 1045-1055. https://doi.org/10.1016/j.ijimpeng.2010.03.006

Jing, L., Xi, C., Wang, Z., Zhao, L. (2013). Energy absorption and failure mechanism of metallic cylindrical sandwich shells under impact loading. Mater. Design 52, 470-480. https://doi.org/10.1016/j.matdes.2013.05.090

Kovačič, A., Ren, Z. (2016). On the porosity of advanced pore morphology structures. Compos. Struct. 158, 235-244. https://doi.org/10.1016/j.compstruct.2016.09.046

Krstulović-Opara, L., Vesenjak, M., Duarte, I., Ren, Z., Domazet, Ž. (2016). Infrared thermography as a method for energy absorption evaluation of metal foams. Mater. Today-Proc. 3 (4), 1025-1030. https://doi.org/10.1016/j.matpr.2016.03.041

Li, Z., Chen, X., Jiang, B., Lu, F. (2016). Local indentation of aluminum foam core sandwich beams at elevated tem­peratures. Compos. Struct. 145, 142-148. https://doi.org/10.1016/j.compstruct.2016.02.083

Li, Z., Zheng, Z., Yu, J., Lu, F. (2017). Deformation and per­foration of sandwich panels with aluminum-foam core at elevated temperatures. Int. J. Impact Eng. 109, 366-377. https://doi.org/10.1016/j.ijimpeng.2017.07.001

Liu, R., Xu, T., Wang, C.A. (2016). A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceram. Int. 42 (2), 2907-2925. https://doi.org/10.1016/j.ceramint.2015.10.148

Onck, P.R. (2003). Scale effects in cellular metals. MRS bull. 28 (4), 279-283. https://doi.org/10.1557/mrs2003.81

Radziszewski, L., Saga, M. (2017). Modeling of non-elastic properties of polymeric foams used in sports helmets. Procedia Engineer. 177, 314-317. https://doi.org/10.1016/j.proeng.2017.02.231

Stöbener, K., Baumeister, J., Rausch, G., Busse, M. (2007). Metal foams with advanced pore morphology (APM). High Temp. Mat. Pr-ISR 26 (4), 231-238. https://doi.org/10.1515/HTMP.2007.26.4.231

Sun, Y., Li, Q.M. (2018). Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. Int. J. Impact Eng. 112, 74-115. https://doi.org/10.1016/j.ijimpeng.2017.10.006

Ulbin, M., Borovinšek, M., Higa, Y., Shimojima, K., Vesenjak, M., Ren, Z. (2014). Internal structure characterization of AlSi7 and AlSi10 advanced pore morphology (APM) foam elements. Mater. Lett. 136, 416-419. https://doi.org/10.1016/j.matlet.2014.08.056

Uzun, A., Turker, M. (2014). The effect of production param­eters on the foaming behavior of spherical-shaped alumi­num foam. Mater. Res. 17 (2), 311-315. https://doi.org/10.1590/S1516-14392014005000006

Uzun, A. (2017). Compressive Crush Performance of Square Tubes Filled with Spheres of Closed-Cell Aluminum Foams. Arch. Metall. Mater. 62 (3), 1755-1760. https://doi.org/10.1515/amm-2017-0267

Vesenjak, M., Borovinšek, M., Fiedler, T., Higa, Y., Ren, Z. (2013). Structural characterisation of advanced pore mor­phology (APM) foam elements. Mater. Lett. 110, 201-203. https://doi.org/10.1016/j.matlet.2013.08.026

Woesz, A., Stampfl, J., Fratzl, P. (2004). Cellular solids beyond the apparent density-an experimental assessment of mechanical properties. Adv. Eng. Mater. 6 (3), 134-138. https://doi.org/10.1002/adem.200300529

Xi, H., Tang, L., Yu, J., Zhang, X., Xie, B., Liu, Y., Jiang, Z., Liu, Z. (2015). Low velocity penetration mechanical behaviors of aluminum foam sandwich plates at elevated tempera­ture. Int. J. Struct. Stab. Dy. 15 (4), 1450063. https://doi.org/10.1142/S0219455414500631

Xi, H., Tang, L., Luo, S., Liu, Y., Jiang, Z., Liu, Z. (2017). A numerical study of temperature effect on the penetration of aluminum foam sandwich panels under impact. Com­pos. Part B-Eng. 130, 217-229. https://doi.org/10.1016/j.compositesb.2017.07.044

Yu, J.L., Wang, X., Wei, Z.G., Wang, E.H. (2003). Deforma­tion and failure mechanism of dynamically loaded sand­wich beams with aluminum-foam core. Int. J. Impact Eng. 28 (3), 331-347. https://doi.org/10.1016/S0734-743X(02)00053-2

Zhao, H., Elnasri, I., Girard, Y. (2007). Perforation of alumin­ium foam core sandwich panels under impact loading - An experimental study. Int. J. Impact Eng. 34 (7), 1246-1257. https://doi.org/10.1016/j.ijimpeng.2006.06.011

Zhu, L., Guo, K., Li, Y., Yu, T.X., Zhou, Q. (2016). Impact Resistance of Aluminium Foam Sandwich Plate under Low Temperatures. The 2nd International Conference in Sports Science & Technology, Singapore.

Zhu, L., Guo, K., Li, Y., Yu, T.X., Zhou, Q. (2018). Experimen­tal study on the dynamic behaviour of aluminium foam sandwich plates under single and repeated impacts at low temperature. Int. J. Impact Eng. 114, 123-132. https://doi.org/10.1016/j.ijimpeng.2017.12.001



How to Cite

Ruiz-Román, J. M., Sánchez de la Muela, A., Cambronero, L. E. G., & Ruiz-Bustinza, Íñigo. (2020). Quasi-static and dynamic analysis of single-layer sandwich structures of APM foam spheroid elements in-situ foamed with marble. Revista De Metalurgia, 56(1), e159. https://doi.org/10.3989/revmetalm.159




Most read articles by the same author(s)