Characterization of flame sprayed NiCrBSiMo coatings deposited with different spraying parameters

Authors

DOI:

https://doi.org/10.3989/revmetalm.169

Keywords:

Coatings, Flame chemistry, Nozzle diameter, Porosity, Stand-off distance

Abstract


Optimization of processing parameters of a Ni-based coating is reported here. Three deposition variables were evaluated, viz. stand-off distance, flame chemistry, and nozzle diameter, on the crystal structure, porosity content, hardness and thickness of the coatings. The analysis was divided into two stages: firstly, the influence of the stand-off distance on the structural and microstructural characteristics of the coatings was determined. In the second stage, a simple 22 factorial design of experiments was employed to investigate the effect of the nozzle diameter and flame chemistry on the porosity, hardness and thickness of the coatings. Results indicated that porosity was strongly influenced by the stand-off distance. Flattening of the particles was achieved at intermediate distance decreasing the porosity; whereas the later increases for short or long distances as a result of the extended or limited particle deformation at impact, respectively. Regarding the nozzle diameter and flame chemistry, results revealed that the former has the predominant effect on the microstructure and hard­ness of the coatings. Small nozzle diameter and neutral flame reduce the porosity and increase the hardness of the coatings. NiCrBSiMo coatings with low porosity and high hardness using a low-cost thermal spray process are obtained through a parameter optimization.

Downloads

Download data is not yet available.

References

Amokrane, B.M., Abdelhamid, S., Youcef, M., Abderrahim, G., Nedjemeddine, B., Ahmed M. (2011). Microstruc­tural and Mechanical Properties of Ni-Base Thermal Spray Coatings Deposited by Flame Spraying. Metall. Mater. Trans. B 42, 932-938. https://doi.org/10.1007/s11663-011-9551-0

Aussavy, D., Costil, S., El Kedim, O., Montavon, G., Bonnot, A.F. (2014). Metal Matrix Composite Coatings Manufac­tured by Thermal Spraying: Influence of the Powder Prep­aration on the Coating Properties. J. Therm. Spray Tech. 23 (1-2), 190-196. https://doi.org/10.1007/s11666-013-9999-3

Bergant, Z., Trdan, U., Grum, J. (2014). Effect of high-tempera­ture furnace treatment on the microstructure and corrosion behavior of NiCrBSi flame-sprayed coatings. Corros. Sci. 88, 372-386. https://doi.org/10.1016/j.corsci.2014.07.057

Culliton, D., Betts, A., Carvalho, S., Kennedy, D. (2013). Improving Tribological Properties of Cast Al-Si Alloys through Application of Wear-Resistant Thermal Spray Coatings. J. Therm. Spray Tech. 22 (4), 491-501. https://doi.org/10.1007/s11666-013-9894-y

Dobler, K., Kreye, H., Schwetzke, R. (2000). Oxidation of stain­less steel in the high velocity oxy-fuel process. J. Therm. Spray Tech. 9, 407-413. https://doi.org/10.1361/105996300770349872

González. R., García, M.A., Peñuelas, I., Cadenas, M., Fernán­dez, R., Hernández Battez, A., Felgueroso, D. (2007a). Microstructural study of NiCrBSi coatings obtained by different processes. Wear 263 (1-6), 619-624. https://doi.org/10.1016/j.wear.2007.01.094

González, R., Cadenas, M., Fernández, R., Cortizo, J.L., Rodríguez, E. (2007b). Wear Behaviour of Flame Sprayed NiCrBSi Coating Remelted by Flame or by Laser. Wear 262 (3-4), 301-307. https://doi.org/10.1016/j.wear.2006.05.009

Grigorescu, I.C., Di Rauso, C., Drira-Halouani, R., Lavelle, B., Di Giampaolo, R., Lira, J. (1995). Phase characteriza­tion in Ni alloy-hard carbide composites for fused coat­ings. Surf. Coat. Tech. 76-77, 494-498. https://doi.org/10.1016/0257-8972(95)02511-1

Gruzdys, E., Meškinis, S., Juraitis, A. (2009). Influence of WC/Co Concentration on Structure and Mechanical Properties of the Thermally Sprayed WC/Co-NiCrBSi Coatings. Materials Science 15 (1), 35-39.

Guo, D.Z., Li, F.L., Wang, J.Y., Sun, J.S. (1995). Effects of post-coating processing on structure and erosive wear characteristics of flame and plasma spray coatings. Surf. Coat. Tech. 73 (1-2), 73-76. https://doi.org/10.1016/0257-8972(94)02364-6

He, J., Ice, M., Lavernia, E. (2001). Particle Melting Behavior during High-Velocity Oxygen Fuel Thermal Spraying. J. Therm. Spray Tech. 10 (1), 83-93. https://doi.org/10.1361/105996301770349547

Hemmati, I., Rao, J.C., Ocelík, V., De Hosson, J.Th.M. (2013). Electron Microscopy Characterization of Ni-Cr-B-Si-C Laser Deposited Coatings. Microsc. Microanal. 19 (1), 120-131. https://doi.org/10.1017/S1431927612013839 PMid:23347419

Higuera Hidalgo, V., Belzunce Varela, F.J., Carriles Menéndez, A., Poveda Martínez, S. (2001). A Comparative Study of High-Temperature Erosion Wear of Plasma-Sprayed NiCrBSiFe and WC-NiCrBSiFe Coatings under Simulated Coal-Fired Boiler Conditions. Tribol. Int. 34 (3), 161-169. https://doi.org/10.1016/S0301-679X(00)00146-8

Jadidi, M., Moghtadernejad, S., Dolatabadi, A. (2015). A Comprehensive Review on Fluid Dynamics and Trans­port of Suspension/Liquid Droplets and Particles in High-Velocity Oxygen-Fuel (HVOF) Thermal Spray. Coatings 5 (4), 576-645. https://doi.org/10.3390/coatings5040576

Karimi, M.R., Salimijazi, H.R., Golozar, M.A. (2016). Effects of Remelting Processes on Porosity of NiCrBSi Flame Sprayed Coatings. Surf. Eng. 32 (3), 238-243. https://doi.org/10.1179/1743294415Y.0000000107

Kim, H-J., Hwang, S-Y., Lee, C-H., Juvanon, P. (2003). Assess­ment of wear performance of flame sprayed and fused Ni-based coatings. Surf. Coat. Tech. 172 (2-3), 262-269. https://doi.org/10.1016/S0257-8972(03)00348-7

Liyanage, T., Fisher, G., Gerlich, A.P. (2010). Influence of alloy chemistry on microstructure and properties in NiCrBSi overlay coatings deposited by plasma transferred arc weld­ing (PTAW). Surf. Coat. Tech. 205 (3), 759-765. https://doi.org/10.1016/j.surfcoat.2010.07.095

Matsubara, Y., Sochi, Y., Tanabe, M., Takeya, A. (2007). Advanced Coatings on Furnace Wall Tubes. J. Therm. Spray Tech. 16 (2), 195-201. https://doi.org/10.1007/s11666-007-9030-y

Miguel, J.M., Guilemany, J.M., Vizcaino, S. (2003). Tribologi­cal Study of NiCrBSi Coating Obtained by Different Pro­cesses. Tribol. Int. 36 (3), 181-187. https://doi.org/10.1016/S0301-679X(02)00144-5

Montgomery, D.C. (1991). Diseño y Análisis de Experimentos. Grupo Editorial Iberoamérica, México.

Mott, R. (1996). Applied Fluid Mechanics. Prentice-Hall Hispanoamericana, Englewood Cliffs.

Mrdak, M., Vencl, A., Cosic, M. (2009). Microstructure and Mechanical Properties of the Mo-NiCrBSi Coating Deposited by Atmospheric Plasma Spraying. FME Trans­actions 37, 27-32.

Navas, C., Colaço, R., De Damborenea, J., Vilar, R. (2006). Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings. Surf. Coat. Tech. 200 (24), 6854-6862. https://doi.org/10.1016/j.surfcoat.2005.10.032

Otsubo, F., Era, H., Kishitake, K. (2000). Structure and Phases in Nickel-Base Self-Fluxing Alloy Coating Containing High Chromium and Boron. J. Therm. Spray Tech. 9 (1), 107-113. https://doi.org/10.1361/105996300770350131

Pawlowski, L. (2008). The Science and Engineering of Thermal Spray Coatings. John Wiley & Sons, Ltd, England. https://doi.org/10.1002/9780470754085

Planche, M.P., Liao, H., Normand, B., Coddet, C. (2005). Rela­tionships between NiCrBSi Particle Characteristics and Corresponding Coating Properties Using Different Thermal Spraying Processes. Surf. Coat. Tech. 200 (7), 2465-2473. https://doi.org/10.1016/j.surfcoat.2004.08.224

Rodríguez, J., Martín, A., Fernández, R., Fernández, J.E. (2003). An experimental study of the wear performance of NiCrBSi thermal spray coatings. Wear 255 (7-12), 950-955. https://doi.org/10.1016/S0043-1648(03)00162-5

Ruiz-Luna, H., Lozano-Mandujano, D., Alvarado-Orozco, J.M., Valarezo, A., Poblano-Salas, C.A., Trápaga-Martínez, L.G., Espinoza-Beltrán, F.J., Muñoz-Saldaña, J. (2014). Effect of HVOF Processing Parameters on the Properties of NiCoCrAlY Coatings by Design of Experi­ments. J. Therm. Spray Tech. 23 (6), 950-961. https://doi.org/10.1007/s11666-014-0121-2

Shrestha, S., Hodgkiess, T., Neville, A. (2005). Erosion-corrosion behaviour of high-velocity oxy-fuel Ni-Cr-Mo-Si-B coat­ings under high-velocity seawater jet impingement. Wear 259 (1-6), 208-218. https://doi.org/10.1016/j.wear.2005.01.038

Singh, S., Kaur, M. (2016). Mechanical and Microstructural Properties of NiCrFeSiBC/Cr3C2 Composite Coatings - Part I. Surf. Eng. 32 (7), 464-474. https://doi.org/10.1179/1743294414Y.0000000416

Valarezo, A., Choi, W.B., Chi, W., Gouldstone, A., Sampath, S. (2010). Process Control and Characterization of NiCr Coatings by HVOF-DJ2700 System: A Process Map Approach. J. Therm. Spray Tech. 19 (5), 852-865. https://doi.org/10.1007/s11666-010-9492-1

Wen, Z.H., Bai, Y., Yang, J.F., Huang, J. (2017). Corrosion resis­tance of vacuum re-melted Ni60-NiCrMoY alloy coatings. J. Alloys Compd. 711, 659-669. https://doi.org/10.1016/j.jallcom.2017.03.318

Yu, H., Zhang, W., Wang, H., Guo, Y., Wei, M., Song, Z., Wang, Y. (2013). Bonding and sliding wear behaviors of the plasma sprayed NiCrBSi coatings. Tribol. Int. 66, 105-113. https://doi.org/10.1016/j.triboint.2013.04.017

Zeng, Z., Kuroda, S., Era, H. (2009). Comparison of oxidation behavior of Ni-20Cr alloy and Ni-base self-fluxing alloy during air plasma spraying. Surf. Coat. Tech. 204 (1-2), 69-77. https://doi.org/10.1016/j.surfcoat.2009.06.036

Zeng, Q., Sun, J., Emori, W., Jiang, S.L. (2016). Corrosion Behavior of Thermally Sprayed NiCrBSi Coating on 16MnR Low-Alloy Steel in KOH Solution. J. Mater. Eng. Perform. 25 (5), 1773-1780. https://doi.org/10.1007/s11665-016-2012-9

Published

2020-06-30

How to Cite

Ruiz-Luna, H., Méndez-Medrano, K. O., Montoya Dávila, M., & Baltazar-Hernández, V. H. (2020). Characterization of flame sprayed NiCrBSiMo coatings deposited with different spraying parameters. Revista De Metalurgia, 56(2), e169. https://doi.org/10.3989/revmetalm.169

Issue

Section

Articles

Most read articles by the same author(s)