Effect of surface macroroughness on the microstructure and sliding wear properties of Al2O3 + 13 wt.% TiO2 thick coatings





Al2O3 13 wt.-% TiO2 coatings, Macroroughness, Sliding wear, Thermal spraying, Thick coating



Two macro-roughness patterns namely spiral grooving and diamond knurling were performed on an AISI/SAE 1045 cylindrical steel bar. Al2O3 + 13 wt.-% TiO2 powder was deposited by utilizing a multi-pass torch. Microstructure, microhardness and wear resistance were analyzed. The presence of both γ-Al2O3 and α-Al2O3 throughout the coating was promoted by partially melted and un-melted particles; however, the formation of interlayers of hard α-Al2O3 was influenced by the re-heating during the multi-pass torch causing transformation from γ-Al2O3→α-Al2O3. Knurling pattern specimens contained less defects owe to a suitable splat accommodation thus strengthening the inter-splat anchorage. The improved sliding wear resistance was influenced by both the combination of γ-Al2O3 (toughness) and α-Al2O3 (hardness) phases and, predominantly by the reduced porosity and micro-cracks in specimens with the knurling pattern.


Download data is not yet available.


ASTM E384 (2017). Standard Test Method for Microindentation Hardness of Materials. ASTM International, West Conshohocken, USA.

ASTM E2109−01 (2021). Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings. ASTM International, West Conshohocken, USA.

ASTM Committee (1994). ASM Handbook "Surface Engineering". Vol 5, ASM International, Materials Park, OH, USA.

Berndt, C.C., McPherson, R. (1979). The Adhesion of Flame and Plasma Sprayed Coatings - A Literature Review. Australas. Weld. Res. 6 (January), pp. 75-85.

Bordeaux, F., Saint Jacques, R. G., Moreau, C. (1991). Study of surface preparation for enhanced resistance to thermal shocks of plasma-sprayed TiC coatings. Surf. Coat. Technol. 49 (1-3), 50-56. https://doi.org/10.1016/0257-8972(91)90030-Z

Bordeaux, F., Jacques, R.G.S., Moreau, C., Dallaire, S., Lu, J. (1992). Thermal shock resistance of TiC coatings plasma sprayed onto macroroughened substrates. Surf. Coat. Technol. 53 (1), 49-56. https://doi.org/10.1016/0257-8972(92)90102-G

Davis, J.R. (2004). Handbook Thermal Spray Technology. ASM International, Materials Park, OH, USA.

Di Girolamo, G., Brentari, A., Blasi, C., Serra, E. (2014). Microstructure and mechanical properties of plasma sprayed alumina-based coatings. Ceram. Int. 40 (8), 12861-12867. https://doi.org/10.1016/j.ceramint.2014.04.143

Fervel, V., Normand, B., Coddet, C. (1999). Tribological behavior of plasma sprayed Al2O3 -based cermet coatings. Wear 230 (1), 70-77. https://doi.org/10.1016/S0043-1648(99)00096-4

Ghazali, M.J., Forghani, S.M., Hassanuddin, N., Muchtar, A., Daud, A.R. (2016). Comparative wear study of plasma sprayed TiO2 and Al2O3-TiO2 on mild steels. Tribol. Int. 93, 681-686. https://doi.org/10.1016/j.triboint.2015.05.001

Habib, K.A., Saura, J.J., Ferrer, C., Damra, M.S., Giménez, E., Cabedo, L. (2006). Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior. Surf. Coat. Technol. 201 (3-4), 1436-1443. https://doi.org/10.1016/j.surfcoat.2006.02.011

Hollis, K.J., Bartram, B.D., Roedig, M., Youchison, D., Nygren, R. (2007). Plasma-sprayed beryllium on macro-roughened substrates for fusion reactor high heat flux applications. J. Therm. Spray Tech. 16 (1), 96-103. https://doi.org/10.1007/s11666-006-9011-6

Islak, S., Buytoz, S., Orhan, N., Stokes, J. (2012). Effect on microstructure of TiO2 rate in Al2O3-TiO2 composite coating produced using plasma spray method. Optoelectron. Adv. Mater. Rapid Commun. 6 (9), 844-849.

James, D.H. (1984). A review of Experimental Findings in surface preparation for thermal spraying. J. Mech. Work. Technol. 10 (2), 221-232. https://doi.org/10.1016/0378-3804(84)90069-X

Lou, H., Goberman, D., Shaw, L., Gell, M. (2003). Identation fracture behavior of plasma-sprayed nanostructured Al2O3-13wt.%TiO2 coatings. Mater. Sci. Eng. A 346 (1-2), 237-245. https://doi.org/10.1016/S0921-5093(02)00523-3

Matějíček, J., Chráska, P., Linke, J. (2007). Thermal spray coatings for fusion applications - Review. J. Therm. Spray Tech. 16 (1), 64-83. https://doi.org/10.1007/s11666-006-9007-2

Matikainen, V., Niemi, K., Koivuluoto, H., Vuoristo, P. (2014). Abrasion, erosion and cavitation erosion wear properties of thermally sprayed alumina based coatings. Coatings 4 (1), 18-36. https://doi.org/10.3390/coatings4010018

McPherson, R. (1973). Formation of metastable phases in flame- and plasma-prepared alumina. J. Mater.s Sci. 8, 851-858. https://doi.org/10.1007/BF02397914

McPherson, R. (1980). On the formation of thermally sprayed alumina coatings. J. Mater. Sci. 15, 3141-3149. https://doi.org/10.1007/BF00550387

Michalak, M., Sokołowski, P., Szala, M., Walczak, M., Łatka, L., Toma, F.-L., Björklund, S. (2021). Wear Behavior Analysis of Al2O3 Coatings Manufactured by APS and HVOF Spraying Processes Using Powder and Suspension Feedstocks. Coatings 11 (8), 879. https://doi.org/10.3390/coatings11080879

Normand, B., Fervel, V., Coddet, C., Nikitine, V. (2000). Tribological properties of plasma sprayed alumina-titania coatings: role and control of the microstructure. Surf. Coat. Technol. 123 (2-3), 278-287. https://doi.org/10.1016/S0257-8972(99)00532-0

Oerlikon Metco (1945). Metallizing Handbook. Long Island City, N.Y.

Paredes, R.S.C., Amico, S.C., d'Oliveira, A.S.C.M. (2006). The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying. Surf. Coat. Technol. 200 (9), 3049-3055. https://doi.org/10.1016/j.surfcoat.2005.02.200

Psyllaki, P.P., Jeandin, M., Pantelis, D.I. (2001). Microstructure and wear mechanisms of thermal-sprayed alumina coatings. Mater. Lett. 47 (1-2), 77-82. https://doi.org/10.1016/S0167-577X(00)00215-9

Romero, R.R. (1990). Machinery Repairman. NAVEDTRA 12204-A. Naval Education and Training Program.

Singh, V.P., Sil, A., Jayaganthan, R. (2011). A study on sliding and erosive wear behaviour of atmospheric plasma sprayed conventional and nanostructured alumina coatings. Mater. Des. 32 (2), 584-591. https://doi.org/10.1016/j.matdes.2010.08.019

Steffens, H.D., Babiak, Z., Gramlich, M. (1999). Some aspects of thick thermal barrier coating lifetime prolongation. J. Therm. Spray Tech. 8 (4), 517-522. https://doi.org/10.1361/105996399770350197

Tucker, R.C. (1974). Structure property relationships in deposits produced by plasma spray and detonation gun techniques. J. Vac. Sci. Technol. 11 (4), 725-734. https://doi.org/10.1116/1.1312743

Wang, Y., Jiang, S., Wang, M., Wang, S., Xiao, T.D., Strutt, P.R. (2000). Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings. Wear 237 (2), 176-185. https://doi.org/10.1016/S0043-1648(99)00323-3

Wang, Y.Y., Li, C.J., Ohmori, A. (2005). Influence of substrate roughness on the bonding mechanisms of high velocity oxy-fuel sprayed coatings. Thin Solid Films 485 (1-2), 141-147. https://doi.org/10.1016/j.tsf.2005.03.024

Yang, Y., Wang, Y., Tian, W., Yan, D-ran, Zhang, J.-xin, Wang, L. (2015). Influence of composite powders' microstructure on the microstructure and properties of Al2O3-TiO2 coatings fabricated by plasma spraying. Mater. Des. 65, 814-822. https://doi.org/10.1016/j.matdes.2014.09.078

Yılmaz, R., Kurt, A.O., Demir, A., Tatlı, Z. (2007). Effects of TiO2 on the mechanical properties of the Al2O3 - TiO2 plasma sprayed coating. J. Eur. Ceram. Soc. 27, 1319-1323. https://doi.org/10.1016/j.jeurceramsoc.2006.04.099

Yilmaz, Ş. (2009). An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3-13 wt.% TiO2 with bond coat on pure titanium substrate. Ceramics International 35 (5), 2017-2022. https://doi.org/10.1016/j.ceramint.2008.11.017



How to Cite

Zesati-Belmontes, S. I. ., López-Baltazar, E. A. ., Ruiz-Mondragón, J. J. ., Ruiz-Luna, H. ., Alvarado-Hernández, F. ., & Baltazar-Hernández, V. H. . (2022). Effect of surface macroroughness on the microstructure and sliding wear properties of Al2O3 + 13 wt.% TiO2 thick coatings. Revista De Metalurgia, 58(4), e232. https://doi.org/10.3989/revmetalm.232




Most read articles by the same author(s)