Effect of surface macroroughness on the microstructure and sliding wear properties of Al2O3 + 13 wt.% TiO2 thick coatings
DOI:
https://doi.org/10.3989/revmetalm.232Keywords:
Al2O3 13 wt.-% TiO2 coatings, Macroroughness, Sliding wear, Thermal spraying, Thick coatingAbstract
ABSTRACT
Two macro-roughness patterns namely spiral grooving and diamond knurling were performed on an AISI/SAE 1045 cylindrical steel bar. Al2O3 + 13 wt.-% TiO2 powder was deposited by utilizing a multi-pass torch. Microstructure, microhardness and wear resistance were analyzed. The presence of both γ-Al2O3 and α-Al2O3 throughout the coating was promoted by partially melted and un-melted particles; however, the formation of interlayers of hard α-Al2O3 was influenced by the re-heating during the multi-pass torch causing transformation from γ-Al2O3→α-Al2O3. Knurling pattern specimens contained less defects owe to a suitable splat accommodation thus strengthening the inter-splat anchorage. The improved sliding wear resistance was influenced by both the combination of γ-Al2O3 (toughness) and α-Al2O3 (hardness) phases and, predominantly by the reduced porosity and micro-cracks in specimens with the knurling pattern.
Downloads
References
ASTM E384 (2017). Standard Test Method for Microindentation Hardness of Materials. ASTM International, West Conshohocken, USA.
ASTM E2109−01 (2021). Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings. ASTM International, West Conshohocken, USA.
ASTM Committee (1994). ASM Handbook "Surface Engineering". Vol 5, ASM International, Materials Park, OH, USA.
Berndt, C.C., McPherson, R. (1979). The Adhesion of Flame and Plasma Sprayed Coatings - A Literature Review. Australas. Weld. Res. 6 (January), pp. 75-85.
Bordeaux, F., Saint Jacques, R. G., Moreau, C. (1991). Study of surface preparation for enhanced resistance to thermal shocks of plasma-sprayed TiC coatings. Surf. Coat. Technol. 49 (1-3), 50-56. https://doi.org/10.1016/0257-8972(91)90030-Z
Bordeaux, F., Jacques, R.G.S., Moreau, C., Dallaire, S., Lu, J. (1992). Thermal shock resistance of TiC coatings plasma sprayed onto macroroughened substrates. Surf. Coat. Technol. 53 (1), 49-56. https://doi.org/10.1016/0257-8972(92)90102-G
Davis, J.R. (2004). Handbook Thermal Spray Technology. ASM International, Materials Park, OH, USA.
Di Girolamo, G., Brentari, A., Blasi, C., Serra, E. (2014). Microstructure and mechanical properties of plasma sprayed alumina-based coatings. Ceram. Int. 40 (8), 12861-12867. https://doi.org/10.1016/j.ceramint.2014.04.143
Fervel, V., Normand, B., Coddet, C. (1999). Tribological behavior of plasma sprayed Al2O3 -based cermet coatings. Wear 230 (1), 70-77. https://doi.org/10.1016/S0043-1648(99)00096-4
Ghazali, M.J., Forghani, S.M., Hassanuddin, N., Muchtar, A., Daud, A.R. (2016). Comparative wear study of plasma sprayed TiO2 and Al2O3-TiO2 on mild steels. Tribol. Int. 93, 681-686. https://doi.org/10.1016/j.triboint.2015.05.001
Habib, K.A., Saura, J.J., Ferrer, C., Damra, M.S., Giménez, E., Cabedo, L. (2006). Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior. Surf. Coat. Technol. 201 (3-4), 1436-1443. https://doi.org/10.1016/j.surfcoat.2006.02.011
Hollis, K.J., Bartram, B.D., Roedig, M., Youchison, D., Nygren, R. (2007). Plasma-sprayed beryllium on macro-roughened substrates for fusion reactor high heat flux applications. J. Therm. Spray Tech. 16 (1), 96-103. https://doi.org/10.1007/s11666-006-9011-6
Islak, S., Buytoz, S., Orhan, N., Stokes, J. (2012). Effect on microstructure of TiO2 rate in Al2O3-TiO2 composite coating produced using plasma spray method. Optoelectron. Adv. Mater. Rapid Commun. 6 (9), 844-849.
James, D.H. (1984). A review of Experimental Findings in surface preparation for thermal spraying. J. Mech. Work. Technol. 10 (2), 221-232. https://doi.org/10.1016/0378-3804(84)90069-X
Lou, H., Goberman, D., Shaw, L., Gell, M. (2003). Identation fracture behavior of plasma-sprayed nanostructured Al2O3-13wt.%TiO2 coatings. Mater. Sci. Eng. A 346 (1-2), 237-245. https://doi.org/10.1016/S0921-5093(02)00523-3
Matějíček, J., Chráska, P., Linke, J. (2007). Thermal spray coatings for fusion applications - Review. J. Therm. Spray Tech. 16 (1), 64-83. https://doi.org/10.1007/s11666-006-9007-2
Matikainen, V., Niemi, K., Koivuluoto, H., Vuoristo, P. (2014). Abrasion, erosion and cavitation erosion wear properties of thermally sprayed alumina based coatings. Coatings 4 (1), 18-36. https://doi.org/10.3390/coatings4010018
McPherson, R. (1973). Formation of metastable phases in flame- and plasma-prepared alumina. J. Mater.s Sci. 8, 851-858. https://doi.org/10.1007/BF02397914
McPherson, R. (1980). On the formation of thermally sprayed alumina coatings. J. Mater. Sci. 15, 3141-3149. https://doi.org/10.1007/BF00550387
Michalak, M., Sokołowski, P., Szala, M., Walczak, M., Łatka, L., Toma, F.-L., Björklund, S. (2021). Wear Behavior Analysis of Al2O3 Coatings Manufactured by APS and HVOF Spraying Processes Using Powder and Suspension Feedstocks. Coatings 11 (8), 879. https://doi.org/10.3390/coatings11080879
Normand, B., Fervel, V., Coddet, C., Nikitine, V. (2000). Tribological properties of plasma sprayed alumina-titania coatings: role and control of the microstructure. Surf. Coat. Technol. 123 (2-3), 278-287. https://doi.org/10.1016/S0257-8972(99)00532-0
Oerlikon Metco (1945). Metallizing Handbook. Long Island City, N.Y.
Paredes, R.S.C., Amico, S.C., d'Oliveira, A.S.C.M. (2006). The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying. Surf. Coat. Technol. 200 (9), 3049-3055. https://doi.org/10.1016/j.surfcoat.2005.02.200
Psyllaki, P.P., Jeandin, M., Pantelis, D.I. (2001). Microstructure and wear mechanisms of thermal-sprayed alumina coatings. Mater. Lett. 47 (1-2), 77-82. https://doi.org/10.1016/S0167-577X(00)00215-9
Romero, R.R. (1990). Machinery Repairman. NAVEDTRA 12204-A. Naval Education and Training Program.
Singh, V.P., Sil, A., Jayaganthan, R. (2011). A study on sliding and erosive wear behaviour of atmospheric plasma sprayed conventional and nanostructured alumina coatings. Mater. Des. 32 (2), 584-591. https://doi.org/10.1016/j.matdes.2010.08.019
Steffens, H.D., Babiak, Z., Gramlich, M. (1999). Some aspects of thick thermal barrier coating lifetime prolongation. J. Therm. Spray Tech. 8 (4), 517-522. https://doi.org/10.1361/105996399770350197
Tucker, R.C. (1974). Structure property relationships in deposits produced by plasma spray and detonation gun techniques. J. Vac. Sci. Technol. 11 (4), 725-734. https://doi.org/10.1116/1.1312743
Wang, Y., Jiang, S., Wang, M., Wang, S., Xiao, T.D., Strutt, P.R. (2000). Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings. Wear 237 (2), 176-185. https://doi.org/10.1016/S0043-1648(99)00323-3
Wang, Y.Y., Li, C.J., Ohmori, A. (2005). Influence of substrate roughness on the bonding mechanisms of high velocity oxy-fuel sprayed coatings. Thin Solid Films 485 (1-2), 141-147. https://doi.org/10.1016/j.tsf.2005.03.024
Yang, Y., Wang, Y., Tian, W., Yan, D-ran, Zhang, J.-xin, Wang, L. (2015). Influence of composite powders' microstructure on the microstructure and properties of Al2O3-TiO2 coatings fabricated by plasma spraying. Mater. Des. 65, 814-822. https://doi.org/10.1016/j.matdes.2014.09.078
Yılmaz, R., Kurt, A.O., Demir, A., Tatlı, Z. (2007). Effects of TiO2 on the mechanical properties of the Al2O3 - TiO2 plasma sprayed coating. J. Eur. Ceram. Soc. 27, 1319-1323. https://doi.org/10.1016/j.jeurceramsoc.2006.04.099
Yilmaz, Ş. (2009). An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3-13 wt.% TiO2 with bond coat on pure titanium substrate. Ceramics International 35 (5), 2017-2022. https://doi.org/10.1016/j.ceramint.2008.11.017
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.