Efecto de la macro-rugosidad superficial sobre la microestructura y las propiedades de desgaste por deslizamiento de recubrimientos gruesos de Al2O3 + 13 % en peso de TiO2
DOI:
https://doi.org/10.3989/revmetalm.232Palabras clave:
Desgaste por deslizamiento, Macro-rugosidad, Proyección térmica, Recubrimientos Al2O3 13 % en peso de TiO2, Recubrimiento gruesoResumen
Se realizaron dos patrones de macro-rugosidad, a saber, ranurado en espiral y moleteado de diamante, en una barra cilíndrica del acero AISI/SAE 1045. Se depositó Al2O3 + 13% en peso de polvo de TiO2 utilizando un soplete en varias pasadas. Se analizó la microestructura, la microdureza y la resistencia al desgaste. La presencia tanto de γ-Al2O3 como de α-Al2O3 en todo el recubrimiento fue promovida por partículas parcialmente fundidas y sin fundir; sin embargo, la formación de capas intermedias de α-Al2O3 duro estuvo influenciada por el recalentamiento con el soplete en pasadas múltiples que provocó la transformación de γ-Al2O3→α-Al2O3. Los especímenes con patrón de moleteado resultaron contener menos defectos debido a una acomodación adecuada de las gotas, lo que fortaleció el anclaje entre las gotas. La mejora de la resistencia al desgaste por deslizamiento estuvo influenciada por la combinación de las fases γ-Al2O3 (tenacidad) y α-Al2O3 (dureza) y, predominantemente, por la reducción de la porosidad y las microfisuras en las probetas con patrón moleteado.
Descargas
Citas
ASTM E384 (2017). Standard Test Method for Microindentation Hardness of Materials. ASTM International, West Conshohocken, USA.
ASTM E2109−01 (2021). Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings. ASTM International, West Conshohocken, USA.
ASTM Committee (1994). ASM Handbook "Surface Engineering". Vol 5, ASM International, Materials Park, OH, USA.
Berndt, C.C., McPherson, R. (1979). The Adhesion of Flame and Plasma Sprayed Coatings - A Literature Review. Australas. Weld. Res. 6 (January), pp. 75-85.
Bordeaux, F., Saint Jacques, R. G., Moreau, C. (1991). Study of surface preparation for enhanced resistance to thermal shocks of plasma-sprayed TiC coatings. Surf. Coat. Technol. 49 (1-3), 50-56. https://doi.org/10.1016/0257-8972(91)90030-Z
Bordeaux, F., Jacques, R.G.S., Moreau, C., Dallaire, S., Lu, J. (1992). Thermal shock resistance of TiC coatings plasma sprayed onto macroroughened substrates. Surf. Coat. Technol. 53 (1), 49-56. https://doi.org/10.1016/0257-8972(92)90102-G
Davis, J.R. (2004). Handbook Thermal Spray Technology. ASM International, Materials Park, OH, USA.
Di Girolamo, G., Brentari, A., Blasi, C., Serra, E. (2014). Microstructure and mechanical properties of plasma sprayed alumina-based coatings. Ceram. Int. 40 (8), 12861-12867. https://doi.org/10.1016/j.ceramint.2014.04.143
Fervel, V., Normand, B., Coddet, C. (1999). Tribological behavior of plasma sprayed Al2O3 -based cermet coatings. Wear 230 (1), 70-77. https://doi.org/10.1016/S0043-1648(99)00096-4
Ghazali, M.J., Forghani, S.M., Hassanuddin, N., Muchtar, A., Daud, A.R. (2016). Comparative wear study of plasma sprayed TiO2 and Al2O3-TiO2 on mild steels. Tribol. Int. 93, 681-686. https://doi.org/10.1016/j.triboint.2015.05.001
Habib, K.A., Saura, J.J., Ferrer, C., Damra, M.S., Giménez, E., Cabedo, L. (2006). Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior. Surf. Coat. Technol. 201 (3-4), 1436-1443. https://doi.org/10.1016/j.surfcoat.2006.02.011
Hollis, K.J., Bartram, B.D., Roedig, M., Youchison, D., Nygren, R. (2007). Plasma-sprayed beryllium on macro-roughened substrates for fusion reactor high heat flux applications. J. Therm. Spray Tech. 16 (1), 96-103. https://doi.org/10.1007/s11666-006-9011-6
Islak, S., Buytoz, S., Orhan, N., Stokes, J. (2012). Effect on microstructure of TiO2 rate in Al2O3-TiO2 composite coating produced using plasma spray method. Optoelectron. Adv. Mater. Rapid Commun. 6 (9), 844-849.
James, D.H. (1984). A review of Experimental Findings in surface preparation for thermal spraying. J. Mech. Work. Technol. 10 (2), 221-232. https://doi.org/10.1016/0378-3804(84)90069-X
Lou, H., Goberman, D., Shaw, L., Gell, M. (2003). Identation fracture behavior of plasma-sprayed nanostructured Al2O3-13wt.%TiO2 coatings. Mater. Sci. Eng. A 346 (1-2), 237-245. https://doi.org/10.1016/S0921-5093(02)00523-3
Matějíček, J., Chráska, P., Linke, J. (2007). Thermal spray coatings for fusion applications - Review. J. Therm. Spray Tech. 16 (1), 64-83. https://doi.org/10.1007/s11666-006-9007-2
Matikainen, V., Niemi, K., Koivuluoto, H., Vuoristo, P. (2014). Abrasion, erosion and cavitation erosion wear properties of thermally sprayed alumina based coatings. Coatings 4 (1), 18-36. https://doi.org/10.3390/coatings4010018
McPherson, R. (1973). Formation of metastable phases in flame- and plasma-prepared alumina. J. Mater.s Sci. 8, 851-858. https://doi.org/10.1007/BF02397914
McPherson, R. (1980). On the formation of thermally sprayed alumina coatings. J. Mater. Sci. 15, 3141-3149. https://doi.org/10.1007/BF00550387
Michalak, M., Sokołowski, P., Szala, M., Walczak, M., Łatka, L., Toma, F.-L., Björklund, S. (2021). Wear Behavior Analysis of Al2O3 Coatings Manufactured by APS and HVOF Spraying Processes Using Powder and Suspension Feedstocks. Coatings 11 (8), 879. https://doi.org/10.3390/coatings11080879
Normand, B., Fervel, V., Coddet, C., Nikitine, V. (2000). Tribological properties of plasma sprayed alumina-titania coatings: role and control of the microstructure. Surf. Coat. Technol. 123 (2-3), 278-287. https://doi.org/10.1016/S0257-8972(99)00532-0
Oerlikon Metco (1945). Metallizing Handbook. Long Island City, N.Y.
Paredes, R.S.C., Amico, S.C., d'Oliveira, A.S.C.M. (2006). The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying. Surf. Coat. Technol. 200 (9), 3049-3055. https://doi.org/10.1016/j.surfcoat.2005.02.200
Psyllaki, P.P., Jeandin, M., Pantelis, D.I. (2001). Microstructure and wear mechanisms of thermal-sprayed alumina coatings. Mater. Lett. 47 (1-2), 77-82. https://doi.org/10.1016/S0167-577X(00)00215-9
Romero, R.R. (1990). Machinery Repairman. NAVEDTRA 12204-A. Naval Education and Training Program.
Singh, V.P., Sil, A., Jayaganthan, R. (2011). A study on sliding and erosive wear behaviour of atmospheric plasma sprayed conventional and nanostructured alumina coatings. Mater. Des. 32 (2), 584-591. https://doi.org/10.1016/j.matdes.2010.08.019
Steffens, H.D., Babiak, Z., Gramlich, M. (1999). Some aspects of thick thermal barrier coating lifetime prolongation. J. Therm. Spray Tech. 8 (4), 517-522. https://doi.org/10.1361/105996399770350197
Tucker, R.C. (1974). Structure property relationships in deposits produced by plasma spray and detonation gun techniques. J. Vac. Sci. Technol. 11 (4), 725-734. https://doi.org/10.1116/1.1312743
Wang, Y., Jiang, S., Wang, M., Wang, S., Xiao, T.D., Strutt, P.R. (2000). Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings. Wear 237 (2), 176-185. https://doi.org/10.1016/S0043-1648(99)00323-3
Wang, Y.Y., Li, C.J., Ohmori, A. (2005). Influence of substrate roughness on the bonding mechanisms of high velocity oxy-fuel sprayed coatings. Thin Solid Films 485 (1-2), 141-147. https://doi.org/10.1016/j.tsf.2005.03.024
Yang, Y., Wang, Y., Tian, W., Yan, D-ran, Zhang, J.-xin, Wang, L. (2015). Influence of composite powders' microstructure on the microstructure and properties of Al2O3-TiO2 coatings fabricated by plasma spraying. Mater. Des. 65, 814-822. https://doi.org/10.1016/j.matdes.2014.09.078
Yılmaz, R., Kurt, A.O., Demir, A., Tatlı, Z. (2007). Effects of TiO2 on the mechanical properties of the Al2O3 - TiO2 plasma sprayed coating. J. Eur. Ceram. Soc. 27, 1319-1323. https://doi.org/10.1016/j.jeurceramsoc.2006.04.099
Yilmaz, Ş. (2009). An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3-13 wt.% TiO2 with bond coat on pure titanium substrate. Ceramics International 35 (5), 2017-2022. https://doi.org/10.1016/j.ceramint.2008.11.017
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.