Bioremoval of iron ions from copper raffinate solution using biosynthetic jarosite seed promoted by Acidithiobacillus ferrooxidans

Authors

DOI:

https://doi.org/10.3989/revmetalm.182

Keywords:

A. ferrooxidans, Ammonium jarosite, Copper raffinate solution, Iron removal, Magnetosome, Solid surface

Abstract


The decrease of iron ions concentration from raffinate solution in copper solvent extraction is significant to maintain good current efficiency. In this study, the combined effects of biosynthetic jarosite seed and Acidithiobacillus ferrooxidans on iron removal of copper raffinate solution and effect of pH were investigated. Ammonium jarosite seeds biosynthesis was performed efficiently at pH 2 and Fe2+ concentration of 50 g·l-1. The percentage of iron removal from raffinate solution at pH of 1.5, 2.5 and 5% seed dosage were 0.81%, 47.38%, and 71.26%, respectively. The iron concentration in raffinate solution was eliminated noticeably up to 71.17% with the incorporation of 10 wt.% jarosite seed and 10% V/V A. ferrooxidans together. This was due to the increase in specific solids surface in the solution and magnetic features of A. ferrooxidans which promoting the removal of iron. pH 2 and jarosite seed loading of 10% was selected as the optimum conditions for iron removal from the raffinate solution. It was concluded that the recovery of copper from biologically refined raffinate could be increased.

Downloads

Download data is not yet available.

References

Albrecht, T.W., Addai-Mensah, J., Fornasiero, D. (2011). Effect of pH, concentration and temperature on copper and zinc hydroxide formation/precipitation in solution. CHEMECA 2011. Engineering a Better World, Institution of Engineers Australia, Barton, Australia, pp. 1-10.

Alguacil, F.J. (2019). The removal of toxic metals from liquid effluents by ion exchange resins. Part IX: Lead (II)/H+/Amberlite IR-120. Rev. Metal. 55 (1), e138.

Bao, Y., Guo, C., Lu, G., Yi, X., Wang, H., Dang, Z. (2018). Role of microbial activity in Fe (III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan mine. Sci. Total Environ. 616-617, 647-657. https://doi.org/10.1016/j.scitotenv.2017.10.273 PMid:29103647

Dutrizac, J.E., Monhemius, A.J. (1986). Iron Control in Hydrometallurgy. Int. Symposium on Iron Control in Hydrometallurgy, Halsted Press, New York, pp. 247-281.

Dutrizac, J.E., Jambor, J.L. (2000). Jarosites and their application in hydrometallurgy. Rev. Mineral. Geochem. 40 (1), 405-452. https://doi.org/10.2138/rmg.2000.40.8

Eftekhari, N., Kargar, M. (2018). Assessment of Optimal Iron Concentration in the Precipitation of Jarosite and the Activity of Acidithiobacillus ferrooxidans. JMBS. 9 (4), 525-529. http://journals.modares.ac.ir/article-22-13929-en.html.

Eftekhari, N., Kargar, M., Rokhbakhsh Zamin, F., Rastakhiz, N., Manafi, Z. (2020). A review on various aspects of jarosite and its utilization potentials. Ann. Chim.-Sci. Mat. 44 (1), 43-52. https://doi.org/10.18280/acsm.440106

Florence, K., Sapsford, D.J., Johnson, D.B., Kay, C.M., Wolkersdorfer, C. (2016). Iron-mineral accretion from acid mine drainage and its application in passive treatment. Environ. Technol. 37 (11), 1428-1440. https://doi.org/10.1080/09593330.2015.1118558 PMid:26675674 PMCid:PMC4867868

Gan, M., Li, M., Zeng, J., Liu, X., Zhu, J., Hu, Y., Qiu, G. (2017). Acidithiobacillus ferrooxidans enhanced heavy metals immobilization efficiency in acidic aqueous system through bio-mediated coprecipitation. T. Nonferr. Metal. Soc. China 27 (5), 1156-1164. https://doi.org/10.1016/S1003-6326(17)60135-3

Gaikwad, R.W., Gupta, D.V. (2008). Review on removal of heavy metals from acid mine drainage. Appl. Ecol. Environ. Res. 6 (3), 81-98. https://doi.org/10.15666/aeer/0603_081098

Gramp, J.P., Jones, F.S., Bigham, J.M., Tuovinen, O.H. (2008). Monovalent cation concentrations determine the types of Fe (III) hydroxysulfate precipitates formed in bioleach solutions. Hydrometallurgy 94 (1-4), 29-33. https://doi.org/10.1016/j.hydromet.2008.05.019

Hou, Q., Fang, D., Liang, J., Zhou, L. (2015). Significance of oxygen supply in jarosite biosynthesis promoted by Acidithiobacillus ferrooxidans. PLoS ONE 10 (3), e0120966. https://doi.org/10.1371/journal.pone.0120966 PMid:25807372 PMCid:PMC4373806

Izadi, A., Mohebbi, A., Amiri, M., Izadi, N. (2017). Removal of iron ions from industrial copper raffinate and electrowinning electrolyte solutions by chemical precipitation and ion exchange. Miner. Eng. 113, 23-35. https://doi.org/10.1016/j.mineng.2017.07.018

Karamanev, D.G., Nikolov, L.N., Mamatarkova, V. (2002). Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Miner. Eng. 15 (5), 341-346. https://doi.org/10.1016/S0892-6875(02)00026-2

Li, M., Zhu, J., Gan, M., Wang, Q., Jie, S., Chai, L. (2014). Characteristics of chromium coprecipitation mediated by Acidithiobacillus ferrooxidans DC. Water Air Soil Pollut. 225 (8), 1-13. https://doi.org/10.1007/s11270-014-2071-1

Li, H.J., Yang, H.Y., Chen, G.B. (2016). Catalytic performance of biological method seeds on jarosite process. T. Nonferr. Metal. Soc. China. 26 (2), 557-564. https://doi.org/10.1016/S1003-6326(16)64144-4

Lin, Q., Gu, G., Wang, H., Wang, C., Liu, Y., Zhu, R., Fu, J. (2016). Separation of manganese from calcium and magnesium in sulfate solutions via carbonate precipitation. T. Nonferr. Metal. Soc. China 26 (4), 1118-1125. https://doi.org/10.1016/S1003-6326(16)64210-3

Liu, J.Y., Xiu, X.X., Cai, P. (2009). Study of formation of jarosite mediated by Thiobacillus ferrooxidans in 9K medium. Procedia Earth Planet. Sci. 1 (1), 706-712. https://doi.org/10.1016/j.proeps.2009.09.111

Liu, P.F., Zhang, Y.F. (2019). Crystallization of ammonium jarosite from ammonium ferric sulfate solutions. Hydrometallurgy 189, 105133. https://doi.org/10.1016/j.hydromet.2019.105133

Nazari, B., Jorjani, E., Hani, H., Manafi, Z., Riahi, A. (2014). Formation of jarosite and its effect on important ions for Acidithiobacillus ferrooxidans bacteria. T. Nonferr. Metal. Soc. China 24 (4), 1152-1160. https://doi.org/10.1016/S1003-6326(14)63174-5

Nemati, M., Harrison, S.T.L., Hansford, G.S., Webb, C. (1998). Biological oxidation of ferrous sulfate by Thiobacillus ferrooxidans: A review on the kinetic aspects. Biochem. Eng. J. 1 (3), 171-190. https://doi.org/10.1016/S1369-703X(98)00006-0

Nur, T., Shim, W.G., Loganathan, P., Vigneswaran, S., Kandasamy, J. (2015). Nitrate removal using Purolite A520E ion exchange resin: batch and fixed bed column adsorption modelling. Int. J. Environ. Sci. Technol. 12 (4), 1311-1320. https://doi.org/10.1007/s13762-014-0510-6

Nurmi, P., Ozkaya, B., Kaksonen, A.H., Tuovinen, O.H., Riekkola-Vanhanen, M.L., Puhakka, J.A. (2009). Process for biological oxidation and control of dissolved iron in bioleach liquors. Process Biochem. 44 (12), 1315-1322. https://doi.org/10.1016/j.procbio.2009.07.004

Nurmi, P., Ozkaya, B., Sasaki, K., Kaksonen, A.H., Riekkola-Vanhanen, M.L., Tuovinen, O.H., Puhakka, J.A. (2010). Biooxidation and precipitation for iron and sulfate removal from heap bioleaching effluent streams. Hydrometallurgy 101 (1-2), 7-14. https://doi.org/10.1016/j.hydromet.2009.11.004

Pogliani, C., Donati, E. (2000). Immobilisation of Thiobacillus ferrooxidans: importance of jarosite precipitation. Process Biochem. 35 (9), 997-1004. https://doi.org/10.1016/S0032-9592(00)00135-7

Wang, H., Bigham, J.M., Tuovinen, O.H. (2006). Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Mater. Sci. Eng. C. 26 (4), 588-592. https://doi.org/10.1016/j.msec.2005.04.009

Watling, H.R. (2006). The bioleaching of sulphide minerals with emphasis on copper sulphides - A review. Hydrometallurgy 84 (1-2), 81-108. https://doi.org/10.1016/j.hydromet.2006.05.001

Yang, B., Lin, M., Fang, J., Zhang, R., Luo, W., Wang, X., Liao, R., Wu, B., Wang, J., Gan, M., Liu, B., Zhang, Y., Liu, X., Qin, W., Qiu, G. (2020). Ccombined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans. Sci. Total Environ. 698, 134175. https://doi.org/10.1016/j.scitotenv.2019.134175 PMid:31518786

Yu, Z., Yu, R., Liu, A., Liu, J., Zeng, W., Liu, X., Qiu, G. (2017). Effect of pH values on extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans during chalcopyrite bioleaching. T. Nonferr. Metal. Soc. China 27 (2), 406-412. https://doi.org/10.1016/S1003-6326(17)60046-3

Zhang, S., Yan, L., Xing, W., Chen, P., Zhang, Y., Wang, W. (2018). Acidithiobacillus ferrooxidans and its potential application. Extremophiles 22 (4), 563-579. https://doi.org/10.1007/s00792-018-1024-9 PMid:29696439

Published

2020-12-18

How to Cite

Eftekhari, N. ., Kargar, M. ., Rokhbakhsh Zamin, F. ., Rastakhiz, N. ., & Manafi, Z. . (2020). Bioremoval of iron ions from copper raffinate solution using biosynthetic jarosite seed promoted by Acidithiobacillus ferrooxidans. Revista De Metalurgia, 56(4), e182. https://doi.org/10.3989/revmetalm.182

Issue

Section

Articles