Low cycle fatigue behavior of Platinum-Aluminide coated Rene®80 near and above the DBTT

Authors

DOI:

https://doi.org/10.3989/revmetalm.179

Keywords:

DBTT, Fractography, Low cycle fatigue, Platinum-aluminide, Rene®80

Abstract


Ni-based superalloy Rene®80 is used for manufacturing gas turbine blades in jet engines. The lifetime of some jet engine turbine blades is limited by low cycle fatigue and this property has been strongly affected by coatings. Ductile to Brittle Transition Temperature (DBTT) is the most important factor which affects the mechanical properties of coated alloys. In this study, high temperature-low cycle fatigue behavior of uncoated and coated Rene®80 by platinum-aluminide (Pt-Al) was evaluated at temperatures 871 °C (near the DBTT) and 982 °C (above the DBTT). Results of low cycle fatigue tests under strain-controlled condition at 871 °C for R =0 and strain rate of 2×10-3 s-1, at a total strain range of 0.8% showed a decrease in fatigue strength of coated specimens about 14%, compared to the uncoated ones. However, increasing the testing temperature from 871 °C to 982 °C, led to an increase in the low cycle fatigue behavior of coated Rene®80 about 10% as compared to the uncoated specimens.

Downloads

Download data is not yet available.

References

Alam, M.Z., Chatterjee, D., Kamat, S.V., Jayaram,V., Das, D.K. (2010). Evaluation of ductile-brittle transition temperature (DBTT) of aluminide bond coats by micro-tensile test methods. Mater. Sci. Eng. A 527 (26), 7147-7150. https://doi.org/10.1016/j.msea.2010.07.059

Alam, M.Z., Srivathsa, B., Kamat, S.V., Jayaram, V., Das, D.K. (2011). Study of brittle-to-ductile-transition in Pt-aluminide bond coat using micro-tensile testing method. Trans. Indian Inst. Met. 64 (57), 57-61. https://doi.org/10.1007/s12666-011-0011-y

Bannantine, J.A., Comer, J.J., Handrock, J.L. (1990). Fundamentals of Metal Fatigue Analysis. Printice Hall.

Barjesteh, M.M., Zangeneh-Madar, K., Abbasi, S.M., Shirvani, K. (2019a). The effect of platinum-aluminide coating features on high temperature fatigue life of nickel-based superalloy Rene®80. J. Min. Metall. B 55 (2), 235-251. https://doi.org/10.2298/JMMB181214029B

Barjesteh, M.M., Abbasi, S.M., Zangeneh-Madar, K., Shirvani, K. (2019b). Correlation between platinum-aluminide coating features and tensile behavior of nickel-based superalloy Rene@80. Rare Met. https://doi.org/10.1007/s12598-019-01293-4

Bose, S. (2007). High Temperature Coating. 1st Edition, Butterworth-Heinemann. https://doi.org/10.1016/B978-075068252-7/50006-8

Brown, C.U., Donmez, A. (2016). Microstructure Analysis for Additive Manufacturing: A Review of Existing Standards. National Institute of Standards and Technology, U.S. Department of Commerce. https://doi.org/10.6028/NIST.AMS.100-3

Cameron, D.W., Allegany, N.Y., Hoeppner, D.W. (1996). Fatigue and Fracture, Fatigue Properties in Engineering. ASM Handbook, Vol. 19, ASM International, pp. 36-56.

Campbell, F.C. (2012). Fatigue and fracture, Understanding the basics. ASM International. https://doi.org/10.31399/asm.tb.ffub.9781627083034

Chen, Y., Zhao, X., Bai, M., Chandio, A., Wu, R., Xiao, P. (2015). Effect of platinum addition on oxidation behaviour of γ/γ′ nickel aluminide. Acta Mater. 86, 319-330. https://doi.org/10.1016/j.actamat.2014.12.023

Gopinath, K., Gogia, A.K., Kamat, S.V., Balamuralikrishnan, R., Ramamurty, U. (2009). Low cycle fatigue behaviour of a low interstitial Ni-base superalloy. Acta Mater. 57 (12), 3450-3459. https://doi.org/10.1016/j.actamat.2009.03.046

Grote, K.H., Antonsson, E.K. (2010). Springer handbook of mechanical engineering. Part B, Applications in mechanical engineering. Springer Sci, USA. p.121. https://doi.org/10.1007/978-3-540-30738-9

Krishna, G.R., Das, D.K., Singh, V., Joshi, S.V. (1998). Role of Pt content in the microstructural development and oxidation performance of Pt aluminide coatings produced using a high-activity aluminizing process. Mater. Sci. Eng. A 251 (1-2), 40-47. https://doi.org/10.1016/S0921-5093(98)00655-8

Kuhn, H., Medlin, D. (2000). ASM Handbook Vol. 8, Mechanical Testing and Evaluation. Materials Park, Ohio, USA, pp. 152-163. https://doi.org/10.31399/asm.hb.v08.a0003266

Parlikar, C., Alam, M.Z., Chatterjee, D., Das, D.K. (2017). Thickness apropos stoichiometry in Pt-aluminide (PtAl) coating: Implications on the tensile properties of a directionally solidified Ni-base superalloy. Mater. Sci. Eng. A 682, 518-526. https://doi.org/10.1016/j.msea.2016.11.074

Pedraza, F., Kennedy, A.D., Kopecek, J., Moretto, P. (2006). Investigation of the microstructure of platinum-modified aluminide coatings. Surf. Coat. Tech. 200 (12-13), 4032-4039. https://doi.org/10.1016/j.surfcoat.2004.12.019

Rahmani, K., Nategh, S. (2008a). Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80. Surf. Coat. Tech. 202 (8), 1385-1391. https://doi.org/10.1016/j.surfcoat.2007.06.041

Rahmani, K., Nategh, S. (2008b). Low cycle fatigue mechanism of René 80 at high temperature-high strain. Mater. Sci. Eng. A 494 (1-2), 385-390. https://doi.org/10.1016/j.msea.2008.04.067

Rao, K.B.S. (2003). High temperature fatigue behaviour of intermetallics. Sadhana 28, 695-708. https://doi.org/10.1007/BF02706454

Rashidghamat, A., Shirvani, K. (2009). Electrodeposition of platinum on nickel-base superalloy Rene-80. In: EFC Workshop on Solutions for High Temperature Corrosion Protection in Energy Conversion System, Frankfurt, Germany.

Rush, M.T. (2012). Development of weld repair methods for Rene 80 nickel based superalloy. Ph.D thesis, Cranfield university, School of Applied Sciences.

Safari, J., Nategh, S. (2006). On the heat treatment of Rene-80 nickel-base superalloy. J. Mater. Process Tech. 176 (1-3), 240-250. https://doi.org/10.1016/j.jmatprotec.2006.03.165

Stephens, I., Fatemi, A., Stephens, R.R., Fuchs, H.O. (1980). Metal Fatigue in Engineering. A Wiley-interscience publication, John Wiley & Sons, 2nd Edition.

Tamarin, Y. (2002). Protective coatings for turbine blades. ASM International.

Vander Voort, G.F. (2004). ASM Handbook Vol. 9, Metallography and Microstructures. Materials Park, Ohio, USA, pp. 403-427. https://doi.org/10.31399/asm.hb.v09.a0003758

Vogel, D., Newman, L., Deb, P., Boone, D.H. (1987). Ductile-to-brittle transition temperature behavior of platinum-modified coatings. Mater. Sci. Eng. A 88, 227-231. https://doi.org/10.1016/0025-5416(87)90089-9

Walker, P., Tarn, W.H. (1991). CRC Handbook of metal etchants. CRC Press LLC. https://doi.org/10.1201/9780367803087

Yuan, K. (2013). Thermal and Mechanical Behaviors of High Temperature Coatings. Ph.D thesis, Linkoping University.

Zhang, X., Gao, H., Wen, Z., Zhang, H., Yue, Z. (2018). Low Cycle Fatigue Failure Analysis of a Ni-Based Single Crystal Superalloys at 850 °C. Adv. Eng. Mater. 21 (2), 1-11. https://doi.org/10.1002/adem.201800647

Zhang, L., Zhao, L.G., Roy, A., Silberschmidt, V.V., McColvin, G. (2019). Low-cycle fatigue of single crystal nickel-based superalloy - mechanical testing and TEM characterization. Mater. Sci. Eng. A 744, 538-547. https://doi.org/10.1016/j.msea.2018.12.084

Published

2020-12-30

How to Cite

Mehdi Barjesteh, M. ., Mehdi Abbasi, S. ., Zangeneh Madar, K. ., & Shirvani, K. . (2020). Low cycle fatigue behavior of Platinum-Aluminide coated Rene®80 near and above the DBTT. Revista De Metalurgia, 56(4), e179. https://doi.org/10.3989/revmetalm.179

Issue

Section

Articles