Investigation of mechanical and corrosion properties of Al 7075/Redmud metal matrix composite

Authors

DOI:

https://doi.org/10.3989/revmetalm.185

Keywords:

Al 7075, Corrosion properties, Mechanical Properties, Redmud, Stir casting, Two-step

Abstract


Investigation in this paper is mechanical properties and corrosion properties of Al 7075 metal matrix composites. Al 7075 metal matrix composite is prepared from Al 7075 as a matrix and redmud as a reinforcement by using two step stir casting process. Volume percentage of reinforcement is varied from 0% to 15%. The experimental density of the composite material produced was calculated according to the Archimedes principle, greater than the basic matrix. Uniform distribution of the reinforcement and matrix in the composite is studied by using optical micrographs and microhardness of the composite is measured by using Vickers hardness testing machine. The microhardness of the composite was increased while the reinforcement went from 0% to 15%. The tensile strength of the composite material is raised at 5% of the reinforcement tolerance (326 MPa), which is higher than the base matrix. The Al 7075 metal matrix composites have a lower corrosion rate in a 3.5% NaCl solution than the base matrix. As the volume percentage increase in red mud, was reduced the corrosion rate of the composites.

Downloads

Download data is not yet available.

References

Alaneme, K.K., Bodunrin, M.O., Chown, L.H., Maledi, N.B. (2020). Flow stress behaviour and microstructural analysis of hot deformed Aluminium matrix composites reinforced with CuZnAlNi shape memory alloy particles. Rev. Metal. 56 (2), e170.

Aravindan, S., Rao, P., Ponappa, K. (2015). Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process. J. Magnes. Alloy 3 (1), 52-62. https://doi.org/10.1016/j.jma.2014.12.008

ASTM E384-11 (2011). Standard Test Method for Knoop and Vickers Hardness of Materials. ASTM International, West Conshohocken, PA, USA.

ASTM G31-12a (2012). Standard Guide for Laboratory Immersion Corrosion Testing of Metals. ASTM International, West Conshohocken, PA, USA.ASTM E8/E8M-13a (2013). Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken, PA, USA.

ASTM E8/E8M-13a (2013). Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken, PA, USA.

ASTM B117-19 (2019). Standard Practice for Operating Salt Spray (Fog) Apparatus. ASTM International, West Conshohocken, PA, USA.

Baradeswaran, A., Perumal, A.E. (2014a). Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites. Compos. Part B-Eng. 56, 464-471. https://doi.org/10.1016/j.compositesb.2013.08.013

Baradeswaran, A., Perumal, A.E. (2014b). Wear and mechanical characteristics of Al 7075/graphite composites. Compos. Part B-Eng. 56, 472-476. https://doi.org/10.1016/j.compositesb.2013.08.073

Çavdar, U., Ulvi Gezici, L., Gül, B., Ayvaz, M. (2020). Microstructural properties and tribological behaviours of Ultra- High frequency induction rapid sintered Al-WC composites. Rev. Metal 56 (1), e163. https://doi.org/10.3989/revmetalm.163

Dabral, R., Panwar, N., Dang, R., Poonia, R., Chauhan, A. (2017). Wear Response of Aluminium 6061 Composite Reinforced with Red Mud at Elevated Temperature. Tribol. Ind. 39 (3), 391-399. https://doi.org/10.24874/ti.2017.39.03.14

Devaganesh, S., Kumar, P.D., Venkatesh, N., Balaji, R. (2020). Study on the mechanical and tribological performances of hybrid SiC-Al7075 metal matrix composites. J. Mater. Res. Technol. 9 (3), 3759-3766. https://doi.org/10.1016/j.jmrt.2020.02.002

Geetha, B., Ganesan, K. (2019). Experimental investigation on influence of particle size on mechanical properties and wear behaviour of A356-red mud metal matrix composite. AIP Conf. Proc. 2128 (1), 020017. https://doi.org/10.1063/1.5117929

Guruchannabasavaiah, N., Auradi, V., Nandeeshaiah, B., Boppana, S.B., Nishanth, B.N. (2021). Investigation on the Microstructure and Mechanical Properties of Aluminum 7075 Reinforced with Different Weight Percentage of Tungsten Carbide and Cobalt Metal Matrix Hybrid Composites. IOP Conf. Ser.- Mat. Sci 1013, 012021. https://doi.org/10.1088/1757-899X/1013/1/012021

Imran, M., Khan, A.A., Megeri, S., Sadik, S. (2016). Study of hardness and tensile strength of Aluminium-7075 percentage varying reinforced with graphite and bagasse-ash composites. Resour.-Eff. Technol. 2 (2), 81-88. https://doi.org/10.1016/j.reffit.2016.06.007

Krupakara, P., Ravikumar, H. (2015). Corrosion Characterization of Aluminium 6061/Red Mud Metal Matrix Composites in Sea Water. Int. J. Adv. Res. Chem. Sci. (IJARCS) 2 (6), 52-55. Corpus ID: 201799168. https://www.arcjournals.org/pdfs/ijarcs/v2-i6/8.pdf.

Panwar, N., Chauhan, A., Pali, H.S., Sharma, M.D. (2020). Fabrication of Aluminum 6061 Red-mud Composite using Stir Casting and Micro Structure Observation. Mater Today- Proc. 21 (4), 2014-2023. https://doi.org/10.1016/j.matpr.2020.01.318

Pradeep, R., Kumar, B.P., Prashanth, B. (2014). Evaluation of mechanical properties of aluminium alloy 7075 reinforced with silicon carbide and red mud composite. Int. J. Adv. Res. Chem. Sci. (IJARCS) 2 (6), 1081- 1088. http://www.ijergs.org/files/documents/EVALUATION-152.pdf.

Prasad, N., Sutar, H., Mishra, S.C., Sahoo, S.K., Acharya, S.K. (2013). Dry sliding wear behavior of aluminium matrix composite using red mud an industrial waste. Int. Res. J. Pure Appl. Chem. 3 (1), 59-74. https://doi.org/10.9734/IRJPAC/2013/2906

Ravi Kumar, D., Seenappa, Rao, C.P., Bharat, V. (2018). Corrosion Behavior of Cenosphere Reinforced Al7075 Metal Matrix Composite-An Experimental Approach. JMMCE 6 (3), 424-437. https://doi.org/10.4236/jmmce.2018.63030

Sai, N.V. (2014). Fabrication and Characterization of Copper- Red Mud Particulate Composites Prepared by Powder Metallurgy Technique. JJMIE 8 (5), 313-321.

Sambathkumar, M., Navaneethakrishnan, P., Ponappa, K., Sasikumar, K.S.K. (2017). Mechanical and corrosion behavior of Al7075 (hybrid) metal matrix composites by two step stir casting process. Lat. Am. J. Solids Stru. 14 (2), 243-255. https://doi.org/10.1590/1679-78253132

Sharma, A., Belokar, R., Kumar, S. (2018). Dry sliding wear characterization of red mud reinforced aluminium composite. J. Braz. Soc. Mech. Sci. Eng. 40, 294. https://doi.org/10.1007/s40430-018-1223-4

Shimizu, Y., Nishimura, T., Matsushima, I. (1995). Corrosion resistance of Al-based metal matrix composites. Mater. Sci. Eng. A 198 (1-2), 113-118. https://doi.org/10.1016/0921-5093(95)80065-3

Singla, Y.K., Chhibber, R., Bansal, H., Kalra, A. (2015). Wear behavior of aluminum alloy 6061-based composites reinforced with SiC, Al2O3, and red mud: A comparative study. JOM 67, 2160-2169. https://doi.org/10.1007/s11837-015-1365-0

Surya, M.S., Prasanthi, G. (2021). Effect of SiC Weight Percentage on Tribological Characteristics of Al7075/SiC Composites. Silicon 1-10. https://doi.org/10.1007/s12633-020-00885-5

Zhou, W., Xu, Z. (1997). Casting of SiC reinforced metal matrix composites. J. Mater. Process. Technol. 63 (1-3), 358-363. https://doi.org/10.1016/S0924-0136(96)02647-7

Published

2021-04-07

How to Cite

Sambathkumar, M. ., Sasikumar, K. S. ., Gukendran, R. ., Dineshkumar, K. ., Ponappa, K. ., & Harichandran, S. . (2021). Investigation of mechanical and corrosion properties of Al 7075/Redmud metal matrix composite. Revista De Metalurgia, 57(1), e185. https://doi.org/10.3989/revmetalm.185

Issue

Section

Articles