Tensile testing of square structure built with electron beam melting

Authors

DOI:

https://doi.org/10.3989/revmetalm.200

Keywords:

Additive manufacturing, Electron beam melting, Finite element method, Lattice structures, Scanning electron microscope, 2-D square

Abstract


Nowadays, additive manufacturing (AM) makes possible the production of complex metallic parts, and the use of the titanium alloy known as Ti6Al4V with AM has become a common application through the industry. One of the most promising designs for AM is the use of lattice structures that offer lightweight parts with high strength and damping properties. Due to these features, its importance is increasing day by day in sectors requiring high technology such as aerospace. In this study, two different 2D lattice structure specimens having the same lattice density but one with wall thickness, the other one without wall thickness, have been produced with the Electron Beam Melting method and their tensile strength has experimented. Comparing the strain of both specimens, the wall thickness greatly affects the strain values. According to both FEM and tensile tests, the samples with wall thickness demonstrated improved tensile strength behavior. Production was carried out with the same production parameter values. Fracture surfaces are scanned with the Scanning Electron Microscope (SEM).

Downloads

Download data is not yet available.

References

ANSYS (2009). Structural Analysis Guide. Release 12.1, USA, SAS IP, Inc.

ASTM E8M-04 (2004). Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken, PA.

ASTM D3039M-17 (2017). Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International, West Conshohocken, PA.

Arabnejad, S., Pasini, D. (2013). Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods. Int. J. Mech. Sci. 77, 249-262. https://doi.org/10.1016/j.ijmecsci.2013.10.003

Biamino, S., Penna, A., Ackelid, U., Sabbadini, S., Tassa, O., Fino, P., Pavese, M., Gennaro, P., Badini, C. (2011). Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation. Intermetallics 19 (6), 776-781. https://doi.org/10.1016/j.intermet.2010.11.017

Chen, J.Y., Huang, M., Ortiz, M. (1998). Fracture analysis of cellular materials: A strain gradient model. J. Mech. Phys. Solids. 46 (5), 789-828. https://doi.org/10.1016/S0022-5096(98)00006-4

Christensen, R.M. (2000). Mechanics of cellular and other low-density materials. Int. J. Solids Struct. 37 (1-2), 93-104. https://doi.org/10.1016/S0020-7683(99)00080-3

Del Guercio, G., Galati, M., Saboori, A., Fino, P., Iuliano, L. (2020). Microstructure and Mechanical Performance of Ti-6Al-4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review. Acta Metall. Sin. (Engl. Lett.) 33, 183-203. https://doi.org/10.1007/s40195-020-00998-1

Dieter, G.E. (1986). Mechanical Metallurgy. McGraw Hill, New York.

Dinita, A., Lambrescu, I., Chebakov, M.I., Dumitru, G. (2018). Finite Element Stress Analysis of Pipelines with Advanced Composite Repair. In: Barkanov E., Dumitrescu A., Parinov I. (eds) Non-destructive Testing and Repair of Pipelines. Springer, Cham. pp. 289-309. https://doi.org/10.1007/978-3-319-56579-8_18

Erdogan, M., Tekeli, S. (2002). The Effect of Martensitic Particle Size on Tensile Fracture of Surface-Carburized AISI, 8620 Steel with Dual Phase Core Microstructure. Mater. Design 23 (7), 597-604. https://doi.org/10.1016/S0261-3069(02)00065-1

Froes, F.H., Dutta, B. (2014). The additive manufacturing (AM) of titanium alloys. Adv. Mat. Res. Trans. Tech. Publ. 1019, 19-25. https://doi.org/10.4028/www.scientific.net/AMR.1019.19

Galati, M., Iuliano L. (2018). A literature review of powder-based electron beam melting focusing on numerical simulations. Addit. Manuf. 19, 1-20. https://doi.org/10.1016/j.addma.2017.11.001

Gaytan, S.M., Murr, L.E., Medina, F., Martinez, E., Lopez, M.I., Wicker, R.B. (2009). Advanced metal powder based manufacturing of complex components by electron beam melting. Mater. Technol. 24 (3), 180-190. https://doi.org/10.1179/106678509X12475882446133

Gibson, L.J., Ashby, M.F. (1999). Cellular Solids: Structure and Properties. Cambridge University Press.

Gong, X., Anderson, T., Chou, K. (2012). Review on powder-based electron beam additive manufacturing technology. IFA 2012, Proceedings of the ASME, pp. 507-515. https://doi.org/10.1115/ISFA2012-7256

Gu, D. (2015). Laser Additive Manufacturing of High-performance Materials. Springer. https://doi.org/10.1007/978-3-662-46089-4

Guedes, J., Kikuchi, N. (1990). Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput. Methods Appl. Mech. Eng. 83 (2), 143-198. https://doi.org/10.1016/0045-7825(90)90148-F

Larsson, M., Lindhe, U., Harrysson, O. (2003). Rapid Manufacturing with Electron Beam Melting (EBM) - A manufacturing revolution?. Inter. Solid Freeform Fabrication Symposium, pp. 438-443.

Leicht, A., Wennberg, E.O. (2015). Analyzing the Mechanical Behavior of Additive Manufactured Ti-6Al-4V Using Digital Image Correlation. Diploma work in the Master programme Materials Engineering, Chalmers University of Technology, Gothenburg, Sweden.

Masters, I., Evans, K. (1996). Models for the elastic deformation of honeycombs. Compos. Struct. 35 (4), 403-22. https://doi.org/10.1016/S0263-8223(96)00054-2

Mezzetta, J., Choi, J.P., Milligan, J., Danovitch, J., Chekir, N., Bois-Brochu, A., Zhao, Y.F., Brochu, M. (2018). Microstructure-Properties Relationships of Ti-6Al-4V Parts Fabricated by Selective Laser Melting. Int. J. Precis. Eng. and Manuf.-Green Tech. 5, 605-612. https://doi.org/10.1007/s40684-018-0062-1

Murr, L.E., Gaytan, S.M., Medina, F., Martinez, E., Martinez, J.L., Hernandez, D.H., Machado, B.I., Ramirez, D.A., Wicker, R.B. (2010). Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng. A 527 (7-8), 1861-1868. https://doi.org/10.1016/j.msea.2009.11.015

Quénard, O., Dorival, O., Guy, Ph., Votié, A., Brethome, K. (2018). Measurement of fracture toughness of metallic materials produced by additive manufacturing. CEAS Space J. 10 (3), 343-353. https://doi.org/10.1007/s12567-018-0202-z

Rafi, H.K., Karthik, N.V., Gong, H., Starr, T.L., Stucker, B.E. (2013). Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting. J. Mater. Eng. Perform. 22 (12), 3872-3883. https://doi.org/10.1007/s11665-013-0658-0

Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S.M. (2015). An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control. Addit. Manuf. 8, 12-35. https://doi.org/10.1016/j.addma.2015.07.002

Shunmugavel, M., Polishetty, A., Littlefair, G. (2015). Microstructure and mechanical properties of wrought and Additive manufactured Ti-6Al-4V cylindrical bars. Procedia Technol. 20, 231-236. https://doi.org/10.1016/j.protcy.2015.07.037

Simonelli, M., Tse, Y.Y., Tuck, C. (2014a). The formation of α +β microstructure in as-fabricated selective laser melting of Ti-6Al-4V. J. Mater. Res. 29, 2028-2035. https://doi.org/10.1557/jmr.2014.166

Simonelli, M., Tse, Y.Y., Tuck, C. (2014b). Effect of the building orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Mater. Sci. Eng. A 616, 1-11. https://doi.org/10.1016/j.msea.2014.07.086

Thompson, S.M., Bian, L., Shamsaei, N., Yadollahi, A. (2015). An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit. Manuf. 8, 36-62. https://doi.org/10.1016/j.addma.2015.07.001

Wang, A., McDowell, D. (2004). In-plane stiffness and yield strength of periodic metal honeycombs. J. Eng. Mater. Technol. 126 (2), 137-156. https://doi.org/10.1115/1.1646165

Published

2021-09-17

How to Cite

Mutlu, B. . (2021). Tensile testing of square structure built with electron beam melting. Revista De Metalurgia, 57(3), e200. https://doi.org/10.3989/revmetalm.200

Issue

Section

Articles