Finite difference modelling for understanding the hydrogen assisted cracking in virtual slow strain rate tensile tests

Authors

DOI:

https://doi.org/10.3989/revmetalm.198

Keywords:

Computer modelling, Finite difference, Microcracks, Multiphysic models, Structural steel, Virtual tests

Abstract


Different hydrogen-induced cracking patterns have been observed on two construction steels belonging to the same strength grade for mooring offshore structures, when tested in a Slow Strain Rate Tensile test (SSRT) condition. A scenario is hypothesized, in which this behaviour arises from differences in hydrogen trapping capacity between the two steels. A novel finite difference modelling approach is proposed to assess the plausibility of this hypothesis. The model is designed to resemble the effect of the diffusible and the trapped hydrogen in the nucleation and growth of cracks during SSRT, and consequently in life service. The effect of different hydrogen trapping capacities has been simulated employing the proposed stress-diffusion-strength model. A higher content in traps led to fewer cracks; while the absence of traps led to a higher number of cracks. These results fit with the hypothesis, as variations in trapping capacity lead to variations in the number of cracks.

 

Downloads

Download data is not yet available.

References

Aldazabal, J., Aldazabal, I. (2013). Computer Modelling of Atomic Movements/Diffusion on Oxide Dispersion Strengthened (ODS) Materials. EUROMAT2013, Seville, Spain.

Anand, L., Mao, Y., Talamini, B. (2019). On modelling fracture of ferritic steels due to hydrogen embrittlement. J. Mech. Phys. Sol. 122, 280-314. https://doi.org/10.1016/j.jmps.2018.09.012

Artola, G. (2018). Susceptibilidad a la fragilización por hidrógeno de aceros de alta resistencia: comportamiento en ambientes marinos y modelización de patrones de agrietamiento. PhD. Thesis, Tecnun-Universidad de Navarra, Donostia-San Sebastián. http://hdl.handle.net/10171/56315.

Artola, G., Arredondo, A., Fernández-Calvo, A., Aldazabal, J. (2018). Hydrogen embrittlement susceptibility of R4 and R5 high strength mooring steels in cool and warm seawater. Metals 8 (9), 700. https://doi.org/10.3390/met8090700

ASTM G129-00 (2013). Standard practice for slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking. ASTM International, West Conshohocken, PA, United States.

Barrera, O., Tarleton, E., Tang, H.W., Cocks, A.C.F. (2016). Modelling the coupling between hydrogen diffusion and the mechanical behavior. Comput. Mater. Sci. 122, 219-228. https://doi.org/10.1016/j.commatsci.2016.05.030

Benannoune, S., Charles, Y., Mougenot, J., Gaspérini, M. (2018). Numerical simulation of the transient hydrogen trapping process using an analytical approximation of the McNabb and Foster equation. Int. J. Hydrog. Energy 43 (18), 9083-9093. https://doi.org/10.1016/j.ijhydene.2018.03.179

Billingham, J., Sharp, J.V., Spurrier, J., Kilgallon, P.J. (2003). Review of the performance of high-strength steels used offshore. 1st ed., HSE Books, Sudbury, UK.

Charles, Y., Gaspérini, M., Fagnon, N., Ardon, K., Duhamel, A. (2019). Finite element simulation of hydrogen transport during plastic bulging of iron submitted to gaseous hydrogen pressure. Eng. Fract. Mech. 218, 106580. https://doi.org/10.1016/j.engfracmech.2019.106580

Depover, T., Verbeken, K. (2018). The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: An experimental proof of the HELP mechanism. Int. J. Hydrog. Energy 43 (5), 3050-3061. https://doi.org/10.1016/j.ijhydene.2017.12.109

Di Leo, C.V., Anand, L. (2013). Hydrogen in metals: A coupled theory for species for species diffusion and large elastic-plastic deformations. Int. J. Plast. 43, 42-69. https://doi.org/10.1016/j.ijplas.2012.11.005

Díaz, A., Alegre J.M., Cuesta I., Zhang, Z. (2019). Numerical Study of Hydrogen Influence on Void Growth at Low Triaxialities Considering Transient Effects. Int. J. Mech. Sci. 164, 105176. https://doi.org/10.1016/j.ijmecsci.2019.105176

Djukic, M.B., Bakic, G.M., Sijacki Zeravcic, V., Sedmak, A., Rajicic, B. (2019). The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion. Eng. Fract. Mech. 216, 106528. https://doi.org/10.1016/j.engfracmech.2019.106528

DNVGL-CP-0237 (2018). Offshore Mooring Chain and Accessories. Class Programme. Approval for Manufacturers. DNG GL AS. Available online: https://rules.dnvgl.com/docs/pdf/dnvgl/CP/2018-07/DNVGL-CP-0237.pdf.

DNVGL-OS-E302 (2018). Offshore Mooring Chain, Offshore Standard. DNV GL AS. Available online: https://rules.dnvgl.com/docs/pdf/dnvgl/OS/2018-07/DNVGL-OS-E302.pdf.

Fielding, L., Song, E., Han, D., Bhadeshia, H.K.D.H., Suh, D.-W. (2014). Hydrogen diffusion and the percolation of austenite in nanostructured bainitic steel. Proceedings of the Royal Society A 470 (2168), 20140108-1-17. https://doi.org/10.1098/rspa.2014.0108

Fu, L., Fang, H. (2018). Formation criterion of hydrogen-induced cracking in steel based on fracture mechanics. Metals 8 (11), 940. https://doi.org/10.3390/met8110940

Hüter, C., Shanthraj, P., McEniry, E., Spatschek, R., Hickel, T., Tehranchi, A., Guo, X., Roters, F. (2018). Multiscale Modelling of Hydrogen Transport and Segregation in Polycrystalline Steels. Metals 8 (6), 430. https://doi.org/10.3390/met8060430

Krom, A.H.M., Koers, R.W.J., Bakker, A.D. (1999a). Hydrogen transport near a blunting crack tip. J. Mech. Phys. Solids 47 (4), 971-992. https://doi.org/10.1016/S0022-5096(98)00064-7

Krom, A.H.M., Maier, H.J., Koers, R.W.J., Bakker, A. (1999b). The effect of strain rate on hydrogen distribution in round tensile specimens. Mater. Sci. and Eng. A. 271 (1-2), 22-30. https://doi.org/10.1016/S0921-5093(99)00276-2

Lin, D., Fang, X., Gan, Y., Zheng, Y. A. (2019). Damped Dynamic Finite Element Difference Approach for Modelling Static Stress-Strain Fields. Pure Appl. Geophys 176, 3851-3865. https://doi.org/10.1007/s00024-019-02207-2

Martínez-Pañeda, E., Golahmar, A., Niordson, C.F. (2018). A phase field formulation of hydrogen assisted cracking. Comp. Methods Appl. Mech. Eng. 342, 742-761. https://doi.org/10.1016/j.cma.2018.07.021

McNabb, A., Foster, P.K. (1963). A new analysis of the diffusion of hydrogen in iron and ferritic steels. Institute of Metals Division, AIME 227, 618-627.

Miresmaeili, R., Ogino, M., Nakagawa, T., Kanayama, H. (2010). A coupled elastoplastic- transient hydrogen diffusion analysis to simulate the onset of necking in tension by using the finite element method. Int. J. Hydrog. Energy 35 (3), 1506-1514. https://doi.org/10.1016/j.ijhydene.2009.11.024

Mohtadi-Bonab, M.A. (2019). Effects of Different Parameters on Initiation and Propagation of Stress Corrosion Cracks in Pipeline Steels: A Review. Metals 9 (5), 590. https://doi.org/10.3390/met9050590

Necati, Ö., Koc, M. (2014). Promises and problems of ultra/advanced high strength steel (U/AHSS) utilization in automotive industry. 7th Automotive Technologies Congress, Bursa, Turkey.

Oh, C.S., Kim, Y.J., Yoon, K.B. (2010). Coupled analysis of hydrogen transport using ABAQUS. J. Solid. Mech. Mat. Eng. 4 (7), 908-917. https://doi.org/10.1299/jmmp.4.908

Ohmi, T., Yokobori, A.T., Takei, K. (2012). Flow Controllability of Hydrogen Diffusion Driven by Local Stress Field for Steel under Cyclic Loading Condition. Defect and Diffusion Forum 326-328, 626-631. https://doi.org/10.4028/www.scientific.net/DDF.326-328.626

Oriani, R.A. (1970). The diffusion and trapping of hydrogen in steel. Acta Metall. 18 (1), 147-57. https://doi.org/10.1016/0001-6160(70)90078-7

Oudriss, A., Fleurentin, A., Courlit, G., Conforto, E., Berziou, C., Rébéré, C., Cohendoz, J.M., Sobrino, J.M., Creus, J., Feaugas, X. (2014). Consequence of the diffusive hydrogen contents on tensile properties of martensitic steel during the desorption at room temperature. Mater. Sci. Eng. A 598, 420-428. https://doi.org/10.1016/j.msea.2014.01.039

Palma, J., Silva, D., Andrade, J.M., Almeida, A. (2012). Numerical modeling of hydrogen diffusion in structural steels under cathodic overprotection and its effects on fatigue crack propagation. Mat.-wiss. U. Werkstofftech. 43 (5), 392-398. https://doi.org/10.1002/mawe.201200971

Park, D., Maroef, I., Landau, A., Olson, D. (2002). Retained austenite as a hydrogen trap in steel welds. Welding Journal 81(2), 27-35. Available online: http://files.aws.org/wj/supplement/Park2-02.pdf.

Park, J.H., Oh, M., Kim, S.J. (2016). Effect of bainite in microstructure on hydrogen diffusion and trapping behavior of ferritic steel used for sour service application. J. Mater. Res. 32 (7), 1295-1303. https://doi.org/10.1557/jmr.2016.480

Peterson, R.E. (1974). Stress Concentration Factor. John Wiley and Sons, NY, USA.

Pound, B.G. (1998). Hydrogen trapping in high strength steels. Acta Mater. 46 (16), 5733-5743. https://doi.org/10.1016/S1359-6454(98)00247-X

Robertson, I., Sofronis, P., Nagao, A., Martin, M., Wang, S., Gross, D., Nygre, K. (2015). Hydrogen embrittlement understood. Metall. Mater. Trans. B 46, 1085-1103. https://doi.org/10.1007/s11663-015-0325-y

San Sebastian, I., Aldazabal, J., Capdevila, C., Garcia-Mateo, C. (2008). Diffusion simulation of Cr-Fe bcc systems at atomic level using a random walk algorithm. Phys. Stat. Solid. A-Appl. Res. 205 (6), 1337-1342. https://doi.org/10.1002/pssa.200778124

Sezgin, J., Takakuwa, O., Matsunaga, H., Yamabe, J. (2019). Simulation of the effect of internal pressure on the integrity of hydrogen pre-charged BCC and FCC steels in SSRT test conditions. Eng. Fract. Mech. 216, 106505. https://doi.org/10.1016/j.engfracmech.2019.106505

Sharp, J.V., Billingham, J., Robinson, M.J. (2001). The risk management of high-strength steels in jack-ups in seawater. Mar. Struct. 14 (4-5), 537-551. https://doi.org/10.1016/S0951-8339(00)00053-8

Takaishi, T. (2017). Phase field crack growth model with hydrogen embrittlement. Mathematical Analysis of Continuum Mechanics and Industrial Applications. H.I. Springer Nature Singapore Pte. Ltd., pp. 27-34. https://doi.org/10.1007/978-981-10-2633-1_3

Toribio, J. (2011). Fracture Mechanics approach to stress corrosion cracking of pipeline steels: when hydrogen is the circumstance. In: Integrity of Pipelines Transporting Hydrocarbons. Springer, Dordrecht, Holland, pp. 37-58. https://doi.org/10.1007/978-94-007-0588-3_4

Turnbull, A., Hutchings, R.B., Ferriss, D.H. (1997). Modelling of thermal desorption of hydrogen from metals. Mater. Sci. Eng. A. 238 (2), 317-328. https://doi.org/10.1016/S0921-5093(97)00426-7

Yan, C., Liu, C., Zhang, G. (2014). Simulation of hydrogen diffusion in weld joint of X80 pipeline steel. J. Cent. South Univ. 21, 4432-4437. https://doi.org/10.1007/s11771-014-2445-y

Yamasaki, S., Bhadeshia, H.K.D.H. (2006). M4C3 precipitation in Fe-C-Mo-V steels and relationship to hydrogen trapping. Proceedings of the Royal Society A 462 (2072), 43-50. https://doi.org/10.1098/rspa.2006.1688

Published

2021-09-29

How to Cite

Artola, G. ., & Aldazabal, J. . (2021). Finite difference modelling for understanding the hydrogen assisted cracking in virtual slow strain rate tensile tests. Revista De Metalurgia, 57(3), e198. https://doi.org/10.3989/revmetalm.198

Issue

Section

Articles

Funding data