Mechanical properties optimization and microstructures of diffusion bonded AA2014/AA7075 al alloys
DOI:
https://doi.org/10.3989/revmetalm.225Keywords:
Aluminium alloy, Diffusion bonding, Mechanical properties, Microstructural characterization, OptimizationAbstract
Diffusion bonding has been successfully used to join dissimilar high-strength aluminium alloys. In bonding AA2014 with AA7075 aluminium alloy, the main diffusion bonding process parameters were optimized to achieve optimum shear and ram tensile strengths. For the strategical planning of experiments, the design of experiment concept was used, as well as the response surface methodology to create statistical models for optimizing the process parameters. The bond strength improved as the interface thickness increased, but above 6 µm (at about 375 °C), the bond strength began to deteriorate. Similarly, the stiffness of the joint interface increased as the process temperature increased due to the development of interfacial phases. The empirical findings were evaluated, and the optimal bonding range was determined in order to maximize the bond’s shear and ram tensile strength.
Downloads
References
Britto, A.S.F., Raj, R.E., Mabel, C.M. (2017). Prediction of shear and tensile strength of the diffusion bonded AA5083 and AA7075 aluminium alloy using ANN. Mater. Sci. Eng. A 692, 1-8. https://doi.org/10.1016/j.msea.2017.03.056
Britto, A.S.F., Raj, R.E., Mabel, C.M. (2018). Prediction and optimization of mechanical strength of diffusion bonds using integrated ANN-GA approach with process variables and metallographic characteristics. J. Manuf. Process. 32, 828-838. https://doi.org/10.1016/j.jmapro.2018.04.015
Britto, A.S.F., Raj, R.E., Mabel, C.M. (2020). Design of bonding process parameters for experimentation and ANN-GA model development to maximize diffusion bond strength. Int. J. Comput. Mater. Sci. Surf. Eng. 9 (3), 177-197. https://doi.org/10.1504/IJCMSSE.2020.110421
Britto, A.S.F., Binoj, J.S., Manikandan, N., Surendranatha, G.M., Naidu, B.V.V., Saji Raveendran, P. (2022). Effect of interfacial thickness on microstructure, mechanical properties, and modelling of diffusion fused dissimilar Al alloys for process optimization using ANN-GA method. Multiscale and Multidiscip. Model. Exp. and Des. 5, 105-117. https://doi.org/10.1007/s41939-021-00106-5
Cai, D., Han, S., Zheng, S., Luo, Z., Zhang, Y., Wang, K. (2018). Microstructure and corrosion resistance of Al5083 alloy hybrid plasma-MIG welds. Journal of Materials Processing Technology 255, 530-535. https://doi.org/10.1016/j.jmatprotec.2017.12.033
Campbell, F.C. (2006). Manufacturing technology for aerospace structural materials. Butterworth-Heinemann Publication, New York, USA. https://doi.org/10.1016/B978-185617495-4/50011-1
Fernandus, M.J., Senthilkumar, T., Balasubramanian, V., Rajakumar, S. (2012). Optimising diffusion bonding parameters to maximize the strength of AA6061 aluminium and AZ31B magnesium alloy joints. Mater. Design 33, 31-41. https://doi.org/10.1016/j.matdes.2011.06.022
Grard, C. (1920). Aluminium and Its Alloys. Constable & Company ltd., Warrington, C.Y Kong, R.C Soar.
He, P., Feng, J.C., Zhang, B.G., Qian, Y.Y. (2002). Microstructure and strength of diffusion bonded joints of Ti Al base alloy to steel. Mater. Charact. 48 (5), 401-406. https://doi.org/10.1016/S1044-5803(02)00319-4
Hill, A., Wallach, E.R. (1989). Modelling Solid-State Diffusion Bonding. Acta Metall. 37 (9), 2425-2431. https://doi.org/10.1016/0001-6160(89)90040-0
Huang, Y., Ridley, N., Humphreys, F.J., Cui, J.Z. (1999). Diffusion bonding of superplastic 7075 aluminium alloy. Materials Science and Engineering A 266 (1-2), 295-302. https://doi.org/10.1016/S0921-5093(98)00958-7
Huang, L., Wu, D., Hua, X., Liu, S., Jiang, Z., Li, F., Wang, H., Shi, S. (2018). Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy. J. Manuf. Process. 31, 514-522. https://doi.org/10.1016/j.jmapro.2017.12.010
Huiping, L., Guoqun, Z., Shanting, N., Yiguo, L. (2007). Technologic parameter optimization of gas quenching process using response surface methods. Comput. Mater. Sci. 38 (4), 561-70. https://doi.org/10.1016/j.commatsci.2006.03.014
Ilangovan, M., Rajendra Boopathy, S., Balasubramanian, V. (2015). Microstructure and tensile properties of friction stir welded dissimilar AA6061/AA5086 aluminium alloy joints. Trans. Nonferrous Met. Soc. China 25 (4), 1080-1090. https://doi.org/10.1016/S1003-6326(15)63701-3
Kazakov, N.F. (1985). Diffusion Bonding of Materials. Mir Publishers, Moscow. https://doi.org/10.1016/B978-0-08-032550-7.50010-2
Kong, C.Y., Soar, R.C., Dickens, P.M. (2004). Optimum process parameters for ultrasonic consolidation of 3003 aluminium. J. Mater. Process. Technol. 146 (2), 181-187. https://doi.org/10.1016/j.jmatprotec.2003.10.016
Li, H., Zou, J., Yao, J., Peng, H. (2017). The effect of TIG welding techniques on microstructure, properties and porosity of the welded Joint of 2219 aluminum alloy. J. Alloys Compd. 725, 531-539. https://doi.org/10.1016/j.jallcom.2017.08.157
Mahendran, G., Balasubramanian, V., Senthilvelan, T. (2009). Developing diffusion bonding windows for joining AZ31B magnesium-AA 2024 Aluminium alloys. Mater. Design 30 (4), 1240-1244. https://doi.org/10.1016/j.matdes.2008.06.015
Morley, R.A., Caruso, J. (1980). Diffusion welding of 390 aluminium alloy hydraulic valve bodies. Welding Journal, 29-34.
Palanisamy, D., Britto, A.S.F., Binoj, J.S., Manikandan, N. (2021). Statistical Optimization of Parameters for Enhanced Properties of Diffusion Bonded AA6061 and AA 7075 Aluminium Alloys. Mater. Today: Proc. 39 (Part 1), 388-397. https://doi.org/10.1016/j.matpr.2020.07.614
Peterson, K.A., Dutta, I., Chen, M. (2004). Processing and characterization of diffusion-bonded Al-Si interfaces. J. Mater. Process. Technol. 145 (1), 99-108. https://doi.org/10.1016/S0924-0136(03)00877-X
Pilling, J., Ridley, N. (1987). Solid state bonding of superplastic AA 7475. Mater. Sci. Technol. 3 (5), 353-359. https://doi.org/10.1179/mst.1987.3.5.353
Kadaganchi, R., Gankidi, M.R., Gokhale, H. (2015). Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology. Def. Technol. 11 (3), 209-219. https://doi.org/10.1016/j.dt.2015.03.003
Singh, A., Garg, H., Lall, A.K. (2017). Optical polishing process: Analysis and optimization using response surface methodology (RSM) for large diameter fused silica flat substrates. J. Manuf. Process. 30, 439-451. https://doi.org/10.1016/j.jmapro.2017.10.017
Sunwoo, A.J. (1993). Diffusion Bonding of Superplastic Aluminum Alloys. National Technical Information Service U.S. Department of Commerce, pp. 1-8. https://doi.org/10.2172/10144113
Sunwoo, A., Lum, R. (1995). Superplastic Deformation Enhanced Diffusion Bonding of Aluminum Alloy 7475. Scripta Metall. Mater. 33 (4), 639-644. https://doi.org/10.1016/0956-716X(95)00224-J
Velmanirajan, K., Abu Thaheer, A.S., Narayanasamy, R., Ahamed Basha, C. (2012). Numerical modelling of aluminum sheets formability using response surface methodology. Materials and Design 41, 239-254. https://doi.org/10.1016/j.matdes.2012.05.027
Wang, Y., Luo, G., Zhang, J., Shen, Q., Zhang, L. (2012). Effect of silver interlayer on microstructure and mechanical properties of diffusion-bonded Mg-Al joints. J. Alloys Compd. 541, 458-461. https://doi.org/10.1016/j.jallcom.2012.06.120
Wang, L., Wei, Y., Zhao, W., Zhan, X., She, L. (2018). Effects of welding parameters on microstructures and mechanical properties of disk laser beam welded 2A14-T6 aluminum alloy joint. J. Manuf. Process. 31, 240-246. https://doi.org/10.1016/j.jmapro.2017.11.017
Wu, Y.E., Lo, Y.L. (2002). Surface protection for AA8090 aluminum alloy by diffusion bonding. Theor. Appl. Fract. Mech. 38 (1), 71-79. https://doi.org/10.1016/S0167-8442(02)00082-4
Zhao, L.M., Zhang, Z.D. (2008). Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg-Al joints. Scripta Mater. 58 (4), 283-286. https://doi.org/10.1016/j.scriptamat.2007.10.006
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.