Microstructure and mechanical properties on friction stir processed TIG welded dissimilar joints of AA5052-H32 and AA5083-H111 alloys by grey approach

Authors

  • Chandrasekaran Chanakyan Department of Mechanical Engineering, R. V. S. College of Engineering and Technology, Kumarankottam Campus https://orcid.org/0000-0001-6546-7726
  • Dhanaraj Antony Prabu Assistant Professor, Department of Mechanical Engineering, Loyola-ICAM College of Engineering and Technology (LICET) https://orcid.org/0000-0003-2550-0952
  • Sivasamy Alagarsamy Department of Mechanical Engineering, Mahath Amma Institute of Engineering and Technology
  • Mark Martin Charles Department of Mechanical Engineering, Loyola-ICAM College of Engineering and Technology (LICET) https://orcid.org/0000-0002-7861-8009

DOI:

https://doi.org/10.3989/revmetalm.230

Keywords:

Aluminium alloys, Electron Microscopy, Friction stir processing, Grey relational analysis, Scanning Tensile testing, TIG welding

Abstract


In this investigation, the mechanical behaviour and microstructural examination of friction stir processed (FSP) Tungsten Inert Gas (TIG) welded aluminium dissimilar alloys has been studied. The research is proposed to enhance the mechanical characteristics of the aluminium alloy 5052-H32 and aluminium alloy 5083-H111 TIG FSP welded joints. Initially, the TIG welding was done to join aluminium alloy 5052-H32 and aluminium alloy 5083-H111 by employing a ER5356 filler rod. TIG welding is performed by using the following parameters: tungsten electrode diameter (2.4 mm), Current (170 A) and a shielding gas flow rate (argon) (11 l·min-1). Secondarily, the FSP is carried out on TIG welded aluminium alloy 5052-H32 and aluminium alloy 5083-H111 by using different tool rotation speeds (850 to 1050 rpm), tool traverse speeds (24 to 32 mm·min-1) and different number of passes (1 to 3) with a cylindrical pin less tool. The FSP parameters are designed by the Taguchi L9 array to compute the optimized parameters. The tensile strength, microhardness and % of elongation are determined for a total of nine specimens. Finally, the grey relational analysis (GRA) is employed to find out the best FSP parameter out of the set of FSP parameters. The optimal parameters of FSP are a tool rotation speed of 950 rpm, tool traverse speed of 28 mm/min and number of passes of 3. The number of passes are the most influencing factor when compared to other two FSP parameters.

Downloads

Download data is not yet available.

References

Ambriz, R.R., Barrera, G., García, R., López, V.H. (2010). Effect of the weld thermal cycles of the modified indirect electric arc on the mechanical properties of the AA6061-T6 alloy. Weld. Int. 24, 321-328. https://doi.org/10.1080/09507110903568778

Antony Prabu, D., Kumarasamy, S. (2021). Mechanical properties and metallurgical characterization of FSPed TIG and TIG welded AA5052-H32/AA5083-H111 dissimilar aluminium alloys. Metall. Res. Technol. 118 (3), 304. https://doi.org/10.1051/metal/2021005

Chanakyan, C., Sivasankar, S. (2020). Parametric studies in friction stir welding on Al-Mg alloy with (HCHCr) tool by Taguchi based desirability function analysis (DFA). J. Ceram. Process. Res. 21 (6), 647-655.

Chanakyan, C., Sivasankar, S., Meignanamoorthy, M., Ravichandran, M., Alagarsamy, S.V., Dinesh Kumar, S., Sakthivelu, S. (2020). Friction stir processing (FSP) of numerical study based on design of experiment-review. Mater. Today. Proceed. 27 (2), 748-751. https://doi.org/10.1016/j.matpr.2019.12.035

Chanakyan, C., Sivasankar, S., Meignanamoorthy, M., Ravichandran, M., Mohanavel, V., Saleh, A., Hesham, S.A., Manikandan, V., Ramesh Lalvani, J.I. (2021a). Optimization of FSP Process Parameters on AA5052 Employing the S/N Ratio and ANOVA Method. Adv. Mater. Sci. Eng. 2021, 6450251. https://doi.org/10.1155/2021/6450251

Chanakyan, C., Sivasankar, S., Meignanamoorthy, M., Alagarsamy, S.V. (2021b). Parametric Optimization of Mechanical Properties via FSW on AA5052 Using Taguchi Based Grey Relational Analysis. Incas. Bulletin 13 (2), 21-30. https://doi.org/10.13111/2066-8201.2021.13.2.3

Chawinee, P., Pusit, M., Tapany, U., Rattana, B. (2010). Effects of Aluminium Alloy Surface Preparation in TIG Dissimilar Metals Welding between Mild Steel and 5052 Aluminium Alloy. Proceed. 12th. Int. Conf. Aluminium. Alloys, Japan, pp. 961-965.

Correa, E.O., Costa, S.C., Santos, J.N. (2009). Studies on weldability of iron-based powder metal alloys using pulsed gas tungsten arc welding process. J. Mater. Process. Technol. 209 (8), 3937-42. https://doi.org/10.1016/j.jmatprotec.2008.09.008

Durgutlu, A. (2016). The effect of continuous and pulsed current on microstructure and mechanical properties in TIG welding of Al-Si alloy sheets. Kovove. Mater. 54 (5), 345-350. https://doi.org/10.4149/km_2016_5_345

Elmariung, A., Sivagami, S.M., Chanakyan, C., Arockiam, J., Sathishkumar, G.B., Meignanamoorthy, M., Ravichandran, M., Alagarsamy, S.V. (2021). Mechanical properties on INCONEL 800H alloy by TIG welding process. Mater. Today. Proceed. In Press https://doi.org/10.1016/j.matpr.2021.01.049

Gulshan, F., Ahsan, Q. (2014). Effect of Heat Input on the Structure and Properties of Aluminium Weldment TIG Welded with 4043 Filler Rod. Chem. Mater. Eng. 2 (2), 25-32. https://doi.org/10.13189/cme.2014.020201

Huang, L., Wu, D., Hua, X., Liu, S., Jiang, Z., Li, F., Wang, H., Shi, S. (2018). Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy. J. Manuf. Process. 31, 514-522. https://doi.org/10.1016/j.jmapro.2017.12.010

Jagathesh, K., Jenarthanan, M.P., Dinesh Babu, P., Chanakyan, C. (2017). Analysis of factors influencing tensile strength in dissimilar welds of AA2024 and AA6061 produced by Friction Stir Welding (FSW). Aust. J. Mech. Eng. 15 (1), 19-26. https://doi.org/10.1080/14484846.2015.1093229

Mohan Kumar, S., Rajesh Kannan, A., Pramod, R., Siva Shanmugam, N., Dhinakaran, V. (2022). Testing, characterization and numerical prediction (uni-axial tension and bend test) of Double-side TIG welded SS321 plate for pressure vessel application. Int. J. Press. Vessels. Piping. 197 (15), 104648. https://doi.org/10.1016/j.ijpvp.2022.104648

Pavan, A.R., Chandrasekar, N., Arivazhagan, B., Kumar, S., Vasudevan, M. (2021). Study of arc characteristics using varying shielding gas and optimization of activated-TIG welding technique for thick AISI 316L(N) plates. CIRP J. Manuf. Sci. Technol. 35, 675-690. https://doi.org/10.1016/j.cirpj.2021.08.013

Pawan, K., Anoop, C.A., Kumar, S. (2013). Study of Heat Input for GTA Welded Aluminium Alloy 7039. Int. J. Eng. Sci. Innov. Technol. 2 (5), 150-156.

Praveen, P., Yarlagadda, P.K.D.V., Kang, M.J. (2005). Advancements in pulse gas metal arc welding. J. Mater. Process. Technol. 164-165, 1113-1119. https://doi.org/10.1016/j.jmatprotec.2005.02.100

Rojas. H., Molina, A., Valdez, S., Campillo, B., Martínez H., Sedano, A., Serna, S. (2020). The impact of heat input on the microstructures, fatigue behaviors, and stress lives of TIG-welded 6061-T6 alloy joints. Mater. Res. Express. 7, 126512. https://doi.org/10.1088/2053-1591/abd136

Samiuddin, M., Li, J., Taimoor, M., Nouman Siddiqui, M., Siddiqui, S.U., Xiong, J. (2021). Investigation on the process parameters of TIG-welded aluminum alloy through mechanical and microstructural characterization. Def. Technol. 17 (4), 1234-1248. https://doi.org/10.1016/j.dt.2020.06.012

Senthil Kumar, T., Balasubramanian, V., Babu, S., Sanavullah,M.Y. (2007). Effect of Pulsed Current GTAW Parameters on Fusion Zone Microstructure of AA6061 aluminium alloy. Met. Mater. Int. 13, 345-351. https://doi.org/10.1007/BF03027892

Yazdipour, A.R., Shafiei, M., Jamshidi Aval, H. (2011). An investigation of the microstructures and properties of metal inert gas and friction stir welds in aluminium alloy 5083. Sadhana 36, 505-514 https://doi.org/10.1007/s12046-011-0032-6

Published

2022-12-27

How to Cite

Chanakyan, C. ., Prabu, D. A. ., Alagarsamy, S. ., & Martin Charles, M. . (2022). Microstructure and mechanical properties on friction stir processed TIG welded dissimilar joints of AA5052-H32 and AA5083-H111 alloys by grey approach. Revista De Metalurgia, 58(4), e230. https://doi.org/10.3989/revmetalm.230

Issue

Section

Articles

Most read articles by the same author(s)