Predicting the weld zones size in FSSW of 304L stainless steel plates by mathematical model based on RSM

Authors

DOI:

https://doi.org/10.3989/revmetalm.240

Keywords:

304L stainless steel, Design of experiments, Finite element method, Friction stir spot welding response surface methodology, Weld zone size

Abstract


The 300 series austenitic stainless steels are widely used in industries due to their special properties. High heat in fusion welding reduces the properties of these steels and causes many problems. Therefore, stir friction spot welding, which is a type of solid state welding, is useful and widely used in high-tech industries. In this paper, a 3D dynamic explicit finite element model is developed to simulate the friction stir spot welding of 304L stainless steel plates. Using this model, the temperature distribution and the size of weld zones (thickness of weld zones) are obtained. Then, by experimental study, the results of the temperature and the size of weld zones were obtained to be a criterion for comparing and validating the numerical results. Microstructure and hardness of these zones are determined experimentally. Finally, a mathematical model based on the response surface methodology is proposed to predict the size of weld zones. Good agreement between the numerical results that are produced by the finite element simulation, the proposed model and the experimental data is observed. The results show the maximum temperature level appears in the stir zone and it reduces by moving from the weld center. Also, by increasing the rotational speed, plunging depth and dwell time of the tool, the size of both the stir zone and the heat affected zone increase to a peak value and then the size of the latter zone decreases.

Downloads

Download data is not yet available.

References

Abaqus Version 6.14 (2014). User's Manual, Dassault Systemes, Simulia Corp.; Providence, RI, USA.

Ahmed, M.M.Z., Ahmed, E., Hamada, A.S., Khodir, S.A., Seleman, M.E.S., Wynne, B.P. (2016). Microstructure and mechanical properties evolution of friction stir spot welded high-Mn twinning-induced plasticity steel. Mater. Des. 91, 378-387. https://doi.org/10.1016/j.matdes.2015.12.001

Al-Moussawi, M., Smith, A.J., Faraji, M. (2017). Friction stir welding of EH46 steel grade at dwell stage: Microstructure evolution. Metallogr. Microstruct. Anal. 6, 489-501. https://doi.org/10.1007/s13632-017-0390-5

ASTM E3-01 (2001). Standard Practice for Preparation of Metallographic Specimens. ASTM International, West Conshohocken, PA, USA.

ASTM E384 (2017). Standard Test Method for Microindentation Hardness of Materials. ASTM International, West Conshohocken, PA, USA.

Aota, K., Ikeuchi, K. (2009). Development of friction stir spot welding using rotating tool without probe and its application to low-carbon steel plates. Weld. Int. 23 (8), 572-580. https://doi.org/10.1080/09507110802543054

Avinash, P., Manikandan, M., Arivazhagan, N., Devendranath Ramkumar, K., Narayanan, S. (2014). Friction Stir Welded Butt Joints of AA2024 T3 and AA7075 T6 Aluminum Alloys. Procedia Eng. 75, 98-102. https://doi.org/10.1016/j.proeng.2013.11.020

Awang, M. (2007). Simulation of friction stir spot welding (FSSW) process: Study of friction phenomena. ProQuest, Graduate Theses, Dissertations, and Problem Reports. 8426, West Virginia University. https://researchrepository.wvu.edu/etd/8426.

Bang, H.S., Lee, W.R., Hong, S.M., Lee, S.Y., Song, J.H., Kim, J.M., Bang, H.S. (2018). Mechanical Properties of Dissimilar A356/SAPH440 Lap Joints by the Friction Stir Spot Welding and Self-Piercing Riveting. Strength Mater. 50, 63-71. https://doi.org/10.1007/s11223-018-9943-3

Heidarzadeh, A., Saeid, T. (2013). Prediction of mechanical properties in friction stir welds of pure copper. Mater. Des. 52, 1077-1087. https://doi.org/10.1016/j.matdes.2013.06.068

Heidarzadeh, A., Mironov, S., Kaibyshev, R., Çam, G., Simar, A., Gerlich, A., Khodabakhshi, F., Mostafaei, A., Field, D.P., Robson, J.D., Deschamps, A., Withers, P.J. (2021). Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Prog. Mater. Sci. 117, 100752. https://doi.org/10.1016/j.pmatsci.2020.100752

Hirasawa, Sh., Badarinarayan, H., Okamoto, K., Tomimura, T., Kawanami, T. (2010). Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. J. Mater. Process. Technol. 210 (11), 1455-1463. https://doi.org/10.1016/j.jmatprotec.2010.04.003

Jiji, L.M. (2006). Heat Convection. Springer-Verlag Berlin Heidelberg.

Johnson, G.R., Cook, J.R. (1983). Constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of 7th Symposium on Ballistics. (Netherlands), pp. 541-547.

Khedr, M., Hamada, A., Järvenpää, A., Elkatatny, S., Abd-Elaziem, W. (2023). Review on the Solid-State Welding of Steels: Diffusion Bonding and Friction Stir Welding Processes. Metals 13 (1), 54. https://doi.org/10.3390/met13010054

Khuri, A.I., Mukhopadhyay, S. (2010). Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2 (2), 128 -149. https://doi.org/10.1002/wics.73

Kokawa, H., Park, S.H.C., Sato, Y.S, Okamoto, K., Hirano, S., Inagaki, M. (2005). Microstructures and properties of friction stir welded 304 austenitic stainless steel. Weld. World 49, 34-40. https://doi.org/10.1007/BF03266473

Kondapalli, S.P., Rao, Ch. S., Rao, D.N. (2014). A Review on Welding of AISI 304L Austenitic Stainless Steel. J. Manuf. Sci. Prod. 14 (1), 1-11. https://doi.org/10.1515/jmsp-2012-0007

Lakshminarayanan, A.K., Annamalai, V.E., Elangovan, K. (2015). Identification of optimum friction stir spot welding process parameters controlling the properties of low carbon automotive steel joints. J. Mater. Res. Technol. 4 (3), 262-272. https://doi.org/10.1016/j.jmrt.2015.01.001

Maurel-Pantel, A., Fontaine, M., Thibaud, S., Gelin, J.C. (2012). 3D FEM simulations of shoulder milling operations on a 304L stainless steel. Simul. Model. Pract. Theory 22, 13-27. https://doi.org/10.1016/j.simpat.2011.10.009

Mishra, R.S, Ma, Z.Y. (2005). Friction Stir Welding and Processing. Mater. Sci. Eng. R Rep. 50 (1-2), 1-78. https://doi.org/10.1016/j.mser.2005.07.001

Mishra, R.S. (2008). Preface to the Viewpoint Set on friction stir processing. Scr. Mater. 58 (5), 325-326. https://doi.org/10.1016/j.scriptamat.2007.10.044

Mohan, D.G., Wu, Ch.S. (2021). A Review on Friction Stir Welding of Steels. Chin. J. Mech. Eng. 34, 137. https://doi.org/10.1186/s10033-021-00655-3

Park, S.C, Sato, Y.S, Kokawa, H., Okamoto, K., Hirano, S., Inagaki, M. (2003). Rapid formation of the sigma phase in 304 stainless steel during friction stir welding. Scr. Mater. 49 (12), 1175-1180. https://doi.org/10.1016/j.scriptamat.2003.08.022

Ragab, M., Liu, H., Yang, G.J., Ahmed, M.M.Z. (2021). Friction Stir Welding of 1Cr11Ni2W2MoV Martensitic Stainless Steel: Numerical Simulation Based on Coupled Eulerian Lagrangian Approach Supported with Experimental Work. Appl. Sci. 11 (17), 3049. https://doi.org/10.3390/app11073049

Ravi Sekhar, S., Chittaranjandas, V., Govardhan, D., Karthikeyan, R. (2018). Effect of tool rotational speed on friction stir spot welded AA5052-H38 aluminum alloy. Mater. Today: Proc. 5 (2), 5536-5543. https://doi.org/10.1016/j.matpr.2017.12.144

Reilly, A., Shercliff, H., Chen, Y., Prangnell, Ph. (2015). Modeling and visualization of material flow in friction stir spot welding. J. Mater. Process. Technol. 225, 473-484. https://doi.org/10.1016/j.jmatprotec.2015.06.021

Reynolds, A.P., Tang, W., Gnaupel-Herold, T., Prask, H. (2003). Structure, properties and residual stress of 304L stainless steel friction stir welds. Scri. Mater. 48 (9), 1289-1294. https://doi.org/10.1016/S1359-6462(03)00024-1

Salih, O.S., Ou, H., Sun, W. (2023). Heat generation, plastic deformation and residual stresses in friction stir welding of aluminium alloy. Int. J. Mech. Sci. 238, 107827. https://doi.org/10.1016/j.ijmecsci.2022.107827

Siddiquee, A.N., Pandey, S., Zaman Khan, N. (2015). Friction Stir Welding of Austenitic Stainless Steel: A Study on Microstructure and Effect of Parameters on Tensile Strength. Mater. Today: Proc. 2 (4-5), 1388-1397. https://doi.org/10.1016/j.matpr.2015.07.058

Siddiquee, A.N., Pandey, S., Abidi, M.H., Al-Ahmari, A., Khan, N.Z., Gangil, N. (2020). Microstructural characterization and in-process traverse force during friction stir welding of austenitic stainless steel. Proc. Inst. Mech. Eng., Part C 234 (5), 1031-1043. https://doi.org/10.1177/0954406219888238

Sharabeyani, S., Daei Sorkhabi, A.H. (2022). The effects of rotational and traverse speeds and SiC particles on the microstructure and mechanical properties of AA 5052 in friction stir welding. Int. J. Mater. Res. 113 (2), 149-160. https://doi.org/10.1515/ijmr-2020-8038

Vakili Tahami, F., Daei Sorkhabi, A.H. Biglari, F.R. (2010). Creep constitutive equations for cold-drawn 304L stainless steel. Mater. Sci. Eng. A 527 (18-19), 4993-4999. https://doi.org/10.1016/j.msea.2010.04.055

Verma, S., Kumar, V., Kumar, R., Sidhu, R.S. (2022). Exploring the application domain of friction stir welding in aluminum and other alloys. Mater. Today: Proc. 50 (5), 1032-1042. https://doi.org/10.1016/j.matpr.2021.07.449

Vinayak, M., Sanjeev, N.K., Suresh Hebbar, H., Kailas, S.V. (2014). Time Efficient Simulations of Plunge and Dwell Phase of FSW and its Significance in FSSW. Procedia Materials Science 5, 630-639. https://doi.org/10.1016/j.mspro.2014.07.309

Zhu, X.K., Chao, Y.J. (2004). Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. J. Mater. Process. Technol. 146 (2), 263-272. https://doi.org/10.1016/j.jmatprotec.2003.10.025

Published

2023-10-31

How to Cite

Daei-Sorkhabi, A. H. (2023). Predicting the weld zones size in FSSW of 304L stainless steel plates by mathematical model based on RSM. Revista De Metalurgia, 59(2), e240. https://doi.org/10.3989/revmetalm.240

Issue

Section

Articles