Solid-fluid characteristics at the blast furnace hearth according to the nodal wear model (NWM)

Authors

  • R. Martín Departamento de Metalurgia Primaria y Reciclado de Materiales CENIM-CSIC
  • M. A. Barbés Grupo Sid-Met-Mat de la Universidad de Oviedo, Unidad Asociada al Departamento de Metalurgia Primaria y Reciclado de Materiales CENIM
  • M. F. Barbés Grupo Sid-Met-Mat de la Universidad de Oviedo, Unidad Asociada al Departamento de Metalurgia Primaria y Reciclado de Materiales CENIM
  • É. Marinas Grupo Sid-Met-Mat de la Universidad de Oviedo, Unidad Asociada al Departamento de Metalurgia Primaria y Reciclado de Materiales CENIM
  • N. Ayala Departamento de Metalurgia Primaria y Reciclado de Materiales CENIM-CSIC
  • J. Mochón Departamento de Metalurgia Primaria y Reciclado de Materiales CENIM-CSIC
  • L. F. Verdeja Grupo Sid-Met-Mat de la Universidad de Oviedo, Unidad Asociada al Departamento de Metalurgia Primaria y Reciclado de Materiales CENIM
  • F. García Departamento de Metalurgia Primaria y Reciclado de Materiales CENIM-CSIC

DOI:

https://doi.org/10.3989/revmetalm.0836

Keywords:

Blast furnace, Hearth, Lining corrosion, Porosity of dead coke (dead man)

Abstract


The coke porosity is one of the most important variables that can affect the pig iron production and the lining corrosion. Up to now, the existing bibliography about lining corrosion always connects a deeper wear to an increase in the fluid flow (pig iron) at the blast furnace hearth. However, there is no evidence of any deterministic model that could link, from the theoretical point of view, the following variables: lining corrosion, porosity of dead coke and flow of pig iron at the hearth. Besides justifying the lining corrosion profiles, the Nodal Wear Model (NWM) can be an effective instrument to interpret the coke porosity and the pig iron speed rates that are generated inside the hearth.

Downloads

Download data is not yet available.

References

[1] J.P. Bennett y J.D. Smith, Fundamentals of Refractory Technology: Corrosion of Industrial Refractories, American Ceramic Society, Ceramic Transactions, Vol. 125, Ohio, EE. UU., 2001, pp.135-154.

[2] M.A. Romero, J. Jimenez, J. Mochón, J.L. Menéndez, A. Formoso y F. Bueno, Rev. Metal. Madrid 36 (2000) 40-46.

[3] R. Parra, L.F. Verdeja, M.F. Barbés, Ch. Goñi y V. Bazán, JOM 57 (2005) 29-36. doi:10.1007/s11837-005-0148-4

[4] Ch. Goñi, M.F. Barbés, V. Bazán, E. Brandaleze, R. Parra y L.F. Verdeja, J. Ceram. Soc. Jpn, 114 (2006) 665-668. doi:10.2109/jcersj.114.665

[5] U. Janhsen, E. Faraji, J.O. Wikström, O. Kerkkonen, P. Arendt y A. Babich, . Technical Steel Research. EUR 22439 EN, Bruselas, 2007.

[6] V. Panjokovic, J.S. Truelove y P. Zulli, Ironmak. Steelmak. 29 (2002) 390-400. doi:10.1179/030192302225005187

[7] H.B. Lu.ngen, H.P. Ru.ther, G. Clixby y G. Cassella, Technical Steel Research. EUR 19347 EN, Bruselas, 2000.

[8] K. Mu.lheims, W.D.N. Pritchard, J.M. Steiler y M. Schulte, Technical Steel Research. EUR 20109 EN, Bruselas, 2002.

[9] L.F. Verdeja, J.P. Sancho y A. Ballester, Materiales Refractarios y Cerámicos, Ed. Síntesis, Madrid, España, 2008, pp. 156-176.

[10] M.F. Barbés, E. Marinas, E. Brandaleze, R. Parra, L.F. Verdeja, G.A. Castillo y R. Colás, ISIJ Int. 48 (2008) 134-140. doi:10.2355/isijinternational.48.134

[11] S.A. Zäimi, M.J. Venturini y D. Sert, Rev. Metall. Paris 99 (2002) 18-19.

[12] U. Janhsen, A. Gu.nbati, C. Sautner, E. Faraji, J.O. Wikström, T. Hilding, E. Eriksson, O. Kerkkonen, P. Arendt y A. Babich, Technical Steel Research. EUR 22439 EN, Bruselas, 2007.

[13] O. Havelange, G. Danloy y C. Franssen, Rev. Metall Paris 101 (2004) 195-201. doi:10.1051/metal:2004101

[14] O. Havelange, G. Danloy, J.M. Venturini, H. Pierret, H-P. Ru.ther, O. Mielenz, H. Köchner; J.A. Alexander, J.R. Post y G. Clixby, Technical Steel Research. EUR 20942 EN, Bruselas, 2004.

[15] G. Danloy, M. Falzetti, A. Formoso, E. Herfurth, E. y J. Vega, Technical Steel Research. EUR 20094 EN/DE, Bruselas, 2002.

[16] C. B. Alcock, Principles of pyrometallurgy. Ed. Academic Press, Londres, England, 1976, pp. 98-99.

[17] J.P. Sancho, L. F. Verdeja y A. Ballester, Metalurgia Extractiva: Procesos de Obtención, Ed. Síntesis, Madrid, España, 2000, pp. 100-103.

[18] Y. Kawai y Y. Shiraishi, Handbook of physicochemical properties at high temperatures, Ed. Iron and Steel Institute of Japan, Tokyo, Japón, 1988.

[19] I. Barin y O. Knacke, Thermochemical properties of inorganic substances. Ed. Springer-Verlag, Berlin, Alemania, 1973.

[20] D. Springorum, Slag Atlas, Ed. Verein Deutscher Eisenhüttenleute (VDEh), Du.sseldorf, Alemania, 1995.

[21] A. Ballester, L.F. Verdeja y J.P. Sancho, Metalurgia Extractiva: Fundamentos, Ed. Síntesis, Madrid, España, 2000, pp. 235-238.

[22] D.R. Poirier y G.H. Geiger, Transport phenomena in materials processing, Ed. TMS, Pennsylvania, EE. UU., 1994, pp. 93-98.

[23] J. Jimenez, J. Mochon y J. Sainz De Ayala, ISIJInt. 44 (2004) 518-526. doi:10.2355/isijinternational.44.518

Downloads

Published

2009-08-30

How to Cite

Martín, R., Barbés, M. A., Barbés, M. F., Marinas, É., Ayala, N., Mochón, J., Verdeja, L. F., & García, F. (2009). Solid-fluid characteristics at the blast furnace hearth according to the nodal wear model (NWM). Revista De Metalurgia, 45(4), 295–304. https://doi.org/10.3989/revmetalm.0836

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>