First stages of zinc runoff in humid tropical climate

Authors

  • E. Meraz Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura
  • L. Veleva Centro de Investigación y Estudios Avanzados (CINVESTAV), Unidad Mérida, Departamento de Física Aplicada
  • M. Acosta Universidad Juárez Autónoma de Tabasco División Académica de Ciencias Básicas

DOI:

https://doi.org/10.3989/revmetalm.2007.v43.i2.55

Keywords:

Zinc, Galvanized steel, Runoff, Atmospheric corrosion, Tropical humid climate

Abstract


Frecuently used metals in building application are Zinc and hot dip galvanized steel. The zinc has a relativelly good atmospheric resitance, due to its oxidation in air and formation of protective layer. However, some of the zinc corrosion products can be dissolved by pluvial precipitations and water condensed on the metal surface. This process is called metal runof. In order to estimate el zinc runoff in humid tropical climate, since its firs stages, samples of pure zinc and hot dip galvanized steel have been exposed during 2 years in outdorr atmosphere (rural and urban). The data reveal high annual values of zinc runoff (8,20–12,40 ±0.30 g/m2año), being this process 80% of total mass loss of corroded zinc. The runoff and corrosion processes are more accelerated for zinc, than that of galvanized steel. The principal factors that control the runoff process are discussed.

Downloads

Download data is not yet available.

References

[1] http://www.unctad.org/infocomm/espagnol/zinc/mercado.htm International Zinc Association (IZA/ILZSG),

[2] Anuario 2002. Instituto Nacional de Estadística Geográfica e Informática (INEGI) de México,.

[3] I.L. Rozenfeld, Atmospheric Corrosion of Metals, B.H. Tytel (Ed.), National Association of Corrosion Engineers (NACE), Houston, TX, EE.UU., 1973.

[4] V. Kucera y E. Mattsson, Atmospheric Corrosion, W.H. Ailor (Ed.), Stockholm, Sweden, 1982.

[5] Corrosion, Vol.1-2, L.L. Shreir, R.A. Jarman y G.T. Burstein (Eds.), 3ra ed., Butterworth-Heinemann, Oxford, England, 1994.

[6] L. Veleva y R. Kane, Atmospheric Corrosion, Vol.13A, S. D. Cramer y B. S. Covinio (Eds.), ASM International, OH, EE.UU., 2003, pp.196-209.

[7] U. Evans, Electrochemical mechanism for atmospheric rusting, Nature 206, (1965) 980-982. doi:10.1038/206980a0

[8] C.J. Slunder y W.K. Boyd, Zinc: Its corrosion resistance, 2da ed., T.K. Christman y J. Payer (Eds.), Int. Lead Zinc Research Org., Inc., N. y., EE.UU., 1983.

[9] T.E. Graedel, J. Electrochem, Soc. 136 (1989) 193C-203C.

[10] X. G. Zhang, Corrosion and Electrochemistry of Zinc, Plenum, N. york, EE. UU., 1996, p.176.

[11] S. Bertling, I. Odnevall, C. Leygraf y D. Berggren, Atmospheric Corrosion ASTM STP 1421, H.E. Townsed (Ed.), ASTM Inter., West Conshohocken, Philadelphia, EE.UU., 2002, pp. 200-215.

[12] J. Förster, Water Sci. Technol. 33 (1996) 39-48. doi:10.1016/0273-1223(96)00329-0

[13] W. He, I.W. Odnevall y C. Leygraf, Water Air Soil Pollut 1 (2001) 67-82.

[14] W. He, I.W. Odnevall y C. Leygraf, Outdoor Atmospheric Corrosion ASTM STP 1421, H.E. Townsed (Ed.), ASTM Inter., West Conshohocken, Philadelphia, EE.UU., 2002, pp. 216-229.

[15] D.G. Heijerick, C.R. Janssen, C. Karlòn, I.W. Odnevall y C. Leygraf, Chemosphere 47, 2002, pp. 1073-1080. doi:10.1016/S0045-6535(02)00014-0

PMid:12137040

[16] C. Karlen, I.W. Odnevall, D. Heijerick, C. Leygraf y C.R. Janssen, Sci. Total Environ. 277 (2001) 169-180. doi:10.1016/S0048-9697(00)00872-X

PMid:11589397

[17] R.H.J. Korenromp y J.C.T. Hollander, TNO-report, TNO-MER-R 99/441, TNO Institute of Environmental Sciences, Energy Research and Process Inovation, NL-7300 Apeldoom, The Netherlands, 1999.

[18] S.A. Matthes, S.D. Cramer, S.J. Bullard, JR.B.S. COVINO y G.R. HOLCOMB, Proc. 58th Ann. Conf. CORROSION NACE, 2003, No. 03598.

[19] Z. Polkowska, T. Górecki y J. Namieênik, Chemosphere 49 (2002) 1.275-1.283.

[20] J.H. Sullivan y D.A. Worsley, Br. Corr. J. 37 (2002) 282-288. doi:10.1179/000705902225006697

[21] V. Rocher, S. Azimi, H. Gaspert, L. Beuvin, M. Muller, M. Régis y G. Chebbo. Water Air Soil Pollut. 159 (2004) 159: 67-86.

[22] M. Faller y D. Reiss, Mater. Corr. 56 (2005) 244- 249. doi:10.1002/maco.200403835

[23] P.C. Van Metre, Chemosphere 52 (2003) 1.727-1.741.

[24] M.I. yaziz, H. Gunting, N. Sapari y A.W. Chazali, Water Res. 23 (1989) 761-765. doi:10.1016/0043-1354(89)90211-X

[25] J. Zobrist, S.R. Müller, A. Ammann, T.D. Bucheli, V. Mottier, M. Ochs, R. Schoenenberger, J. Eugster y M. Boller, Water Res. 34 (2000) 1.455-1.462.

[26] L. Veleva y L. Maldonado, Br. Corr. J. 33 (1998) 53-57.

[27] L. Maldonado y L. Veleva, Mater. Corr. 50 (1999) 261-266 doi:10.1002/(SICI)1521-4176(199905)50:5<261::AID-MACO261>3.0.CO;2-G

[28] L. Veleva y M. Alpuche-Aviles, Outdoor Atmospheric Corrosion ASTM STP 1421, H.E. Townsend (Ed.), American Society for Testing and Materials, West Conshohocken. Philiadelphia, EE.UU., 2002, pp. 48-58.

[29] F. Corvo, C. Haces, N. Betancourt, L. Maldonado, L. Veleva, M. Echeverria, O. Rincon y A. Rincon, Corros. Sci. 39 (1997) 823-833. doi:10.1016/S0010-938X(96)00138-2

[30] J.M. Costa y J. Vilarrasa, Br. Corr. J. 28 (1993) 117-120.

[31] E. Almeida, M. Morcillo y B. Rosales, Br. Corr. J. 35 (2000) 284-288 y 289-296.

[32] ISO 9226, Corrosion of metals and alloys. Corrosivity of atmospheres. Determination of corrosion rate of standard specimens for the evaluation of corrosivity, International Organization for Standardization, Geneva, Switzerland, 1992.

[33] ASTM G50-76, Standard Practice for Conducting Atmospheric Corrosion Test on Metals, ASTM Intern., West Conshohocken, P.A, EE.UU., 2003.

[34] ISO 9223, Corrosion of Metals and Alloys. Corrosivity of Atmospheres. Classification, International Organization for Standardization, Geneva, Switzerland, 1992.

[35] L Veleva, G. Pérez y M. Acosta, Atmos. Environ. 31 (1997) 773-776. doi:10.1016/S1352-2310(96)00232-4

[36] ISO 9225, Corrosion of Metals and Alloys, Corrosivity of Atmospheres. Measurement of pollution, International Organization for Standardization, Geneva, Switzerland, 1992.

[37] P. Quintana, L. Veleva, W. Cahuich, R. Pomés y J.L. Peña, Appl. Surf. Sci. 99 (1996) 325-334. doi:10.1016/0169-4332(96)00597-1

[38] P. Quintana, L. Veleva y L. BaÑOS, Ad. X-ray Anal. 40 (1997) 1.

[39] M. Ohanian, R. Caraballo, E.A. Dalchiele, G. Gunieo Cobs, V. Martinez Luaces y E. Quagliata, Rev. Metal. Madrid 41 (2005) 175-185.

[40] D. De La Fuente, B. Chico y M. Morcillo, Rev. Metal. Madrid Vol. Extr. (2005) 438-442.

[41] H.E. Townsed, Corros. 55 (1999) 547.

[42] I. Odnevall y C. Leygraf, Corros. Sci. 34 (1993) 1.213-1.229.

[43] C. Leygraf y T. Graedel, Atmospheric Corrosion, Wiley-Interscience Inc., New york, EE. UU., 2000. [44] M. POURBAIX, Atlas of Electrochemical Equilibrium in Aqueous Solutions, NACE International, Houston, TX, EE. UU., 1974.

[45] I. Odnevall y C. Leygraf, Corros. Sci. 36 (1994) 1.077-1.087.

[46] S. Joven, B. Hannoyer, A. Barbier, J. Kasperek y M. Jean, Mat. Chem. Phys. 85 (2004) 73-80.

[47] W.R. Osório, S.A. Siqueirá, C.M.A. Freire y A. García, Rev. Metal. Madrid Vol. Extr. (2005)176-180.

[48] W.R. Osório, C.M.A. Freire y A. García, Rev. Metal. Madrid Vol. Extr. (2005)160-164.

Downloads

Published

2007-04-30

How to Cite

Meraz, E., Veleva, L., & Acosta, M. (2007). First stages of zinc runoff in humid tropical climate. Revista De Metalurgia, 43(2), 85–100. https://doi.org/10.3989/revmetalm.2007.v43.i2.55

Issue

Section

Articles