Non isothermal calorimetric study of the precipitation processes in a Cu-10% Ni-3% Al alloy

Authors

  • E. Donoso Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ciencia de los Materiales
  • M. J. Diánez Instituto de Ciencias de Materiales de Sevilla
  • M. J. Sayagués Instituto de Ciencias de Materiales de Sevilla
  • J. M. Criado Instituto de Ciencias de Materiales de Sevilla
  • A. Varschavsky Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ciencia de los Materiales
  • G. Díaz Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ciencia de los Materiales

DOI:

https://doi.org/10.3989/revmetalm.2007.v43.i2.58

Keywords:

DSC, Precipitation, Copper, Cu-Ni-Al, Microhardness, Kinetics

Abstract


Using differential scanning calorimetry (DSC), the precipitation process of nickel and aluminium atoms from a solid solution of Cu-Ni-Al were studied. Analysis of calorimetric traces displayed shows the presence of two exothermic reactions (stage 1 and 2), which were interpreted as the formation of two types of precipitates. The first stage corresponds to the formation of an equilibrium b (NiAl) phase, whilst stage 2 corresponds to the formation of g’ precipitate with Ni3Al stoichiometric composition. It is observed the shift of the traces to lower temperatures while linear heating rate decrease. The activation reaction energies were evaluated from modified Kissinger’s method. Kinetic parameters were calculated by means Johnson-Mehl-Avrami formalism. The values obtained for parameter n were indicative of a particle nucleation process from pre-existent nucleus. Microhardness measurements and micrographies obtained by transmission electron microscopy were helpful to confirm the formation and the dissolution of the mentioned phases.

Downloads

Download data is not yet available.

References

[1] D.J. Badiola y I. Gutierrez, Rev. Metal. Madrid 41 (2005) 258-265.

[2] M. López, C. Camurri, V. Vergara y J.A. Jiménez, Rev. Metal. Madrid 41 (2005) 308-312.

[3] M. López, C. Camurri, D. Corredor y J.A. Jiménez, Rev. Metal. Madrid 41 (2005) 313-318.

[4] A. Pardo, M.C. Merino, J. Botella, V. Matres, E. Viejo, M. Carboneras y R. Arrabal, Rev. Metal. Madrid 40 (2004) 335-340.

[5] J. Ipinza, J.P. Ibáñez, E. Vergara y A. Pagliero, Rev. Metal. Madrid 40 (2004) 13-20.

[6] A. Varschavsky y E. Donoso, J. Termal Anal. Cal. 68 (2002) 231-241. doi:10.1023/A:1014969618372

[7] E. Donoso, Rev. Metal. Madrid 37 (2001) 492-498.

[8] A.Varschavsky y E. Donoso, Mater. Lett. 57 (2003) 1266-1271. doi:10.1016/S0167-577X(02)00970-9

[9] L. Mineau, S. Hamar-Thibault y C.H. Allibert, Phys. Staus Solidi (A) 134 (1992) 93-105. doi:10.1002/pssa.2211340107

[10] S. Nagarjuna, K.K. Sharma, I. Sudhakar y D.S. Sarma, Mater. Sci. Eng. A 313 (2001) 251-260. doi:10.1016/S0921-5093(00)01834-7

[11] G. Fortina y M. Leoni, Metal. Ital. 10 (1972) 470-480.

[12] ASM Handbook, vol. 3, H. Baker (ed.), ASM, 1992.

[13] Z. Sierpinski y J. Gryziecki, Mater. Sci. Eng. A, 264 (1999) 279-285. doi:10.1016/S0921-5093(98)01083-1

[14] Z. Sierpinski y J. Gryziecki, Z. Metallkd. 89 (1998) 551-553.

[15] Y-R Cho, Y-H Kim y T.D. Lee, J. Mater. Sci., 26 (1991) 2.879-2.886.

[16] A. Varschavsky y E. Donoso, Mater. Sci. Eng. A 145 (1991) 95-107. doi:10.1016/0921-5093(91)90299-3

[17] E.J. Mittemeijer, L. Cheng., P.J. Van Der Shaaf, C.M. Brakman y B.M. Korevaar, Metall. Trans. 19A (1988) 925-932.

[18] M. Shimotomai, T. Iwata y M. Doyama, Phil. Mag. 51 (1985) L49-L53.

[19] T.M. Wang, M. Shimotomai y M. Doyama, Phil. Mag. 48 (1983) L5.

[20] A.M. Brown y Ashby, Acta Metall. 28 (1980) 1.085-1.101.

[21] C. Sandu y R. Singh, Thermochim. Acta, 159 (1990) 267-298. doi:10.1016/0040-6031(90)80115-F

[22] J. W. Christian, The theory of transformations in metals and alloys. PartI: Equilibrium and general kinetics theory, Pergamon Press, New york, 1975, p. 542.

[23] A. Varschavsky y E. Donoso, Thermochim. Acta 69 (1983) 341-348. doi:10.1016/0040-6031(83)80340-2

[24] A. Varschavsky y E. Donoso, J. Mater. Sci. 21 (1986) 3873-3883. doi:10.1007/BF02431624

[25] J. Lendvai, T. Ungar, I. Kovács y B. Albert, J. Mater. Sci. 23 (1988) 4.059-4.065.

[26] W. Leo y G. Wassermann, Metall. 21 (1967) 10-14.

[27] A. Varschavsky y E. Donoso, J. Thermal Anal. Cal. 74 (2003) 41-56. doi:10.1023/A:1026365400535

[28] R. Hu y P. Nash, J. Mater. Sci. 40 (2005) 1.067-1.069.

[29] L.M. Brown y R.K. Ham, Strengthening Methods in Crystals, A. Kelly y R.B. Nicholson (eds.), Aplied Science, Barking, Essex, 1971, p.103.

[30] T. Krum, E. Conforto, B. Lo Piccolo, D. Caillard y J.L. Martin, Acta Mater. 50 (2002) 5.091-5.101.

[31] W. Pfeiler y B. Sprusil, Mater. Sci. Eng. 324ª (2002) 34-42.

Downloads

Published

2007-04-30

How to Cite

Donoso, E., Diánez, M. J., Sayagués, M. J., Criado, J. M., Varschavsky, A., & Díaz, G. (2007). Non isothermal calorimetric study of the precipitation processes in a Cu-10% Ni-3% Al alloy. Revista De Metalurgia, 43(2), 117–124. https://doi.org/10.3989/revmetalm.2007.v43.i2.58

Issue

Section

Articles