Characterization and high temperature mechanical properties in a duplex stainless steel
DOI:
https://doi.org/10.3989/revmetalm.1998.v34.iExtra.757Keywords:
Duplex steels, Creep, Mechanical propertiesAbstract
The microstructure and mechanical behavior at high temperature of a thermomechanical processed duplex stainless steel have been studied. Recrystalization of the material takes place during heating to test temperature, and a microstructure consisting of islands of austenitic grains of about 10-15 μm in size included in a more or less continuous matrix of ferrite is observed. Tensile tests at temperatures above 1,000°C and at low strain rates show a stress exponent of about 2 and elongations to failure up to 290 %. These values suggest that deformation is controlled by a grain boundary sliding mechanism, which causes a decrease in the size of the islands during deformation. Finally, an activation energy for plastic deformation of 167 kJ/mol was observed that was related to the activation energy for grain boundary diffusion of iron.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1998 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.