Cuban barite characterization and its carbothermic reduction in microwave oven

Authors

  • O. Quesada Universidad de Oriente
  • J. C. Llópiz Universidad de La Habana
  • E. Martínez Instituto de Ciencias de Materiales. Universidad de Valencia
  • K. Otero Universidad de La Habana
  • R. M. Acosta Universidad de Oriente
  • W. Ricardo Universidad de La Habana

DOI:

https://doi.org/10.3989/revmetalm.2007.v43.i6.88

Keywords:

Barite, Carbothermic reduction, Microwave assisted reduction, Barium sulfide

Abstract


The Cuban Barite (BaSO4) is characterized by X ray diffraction, chemical analysis and scanning electron microscopy. The principal components are identified and its characteristic morphology is shown. Its carbothermic reduction under microwave irradiation is carried out with the purpose of to improve the yield of this stage during the mineral transformation process in reagent of barium of diverse applications.

Downloads

Download data is not yet available.

References

[1] A. N. Gokarn, A.G. Gaikwad y C.A. Phalak, J. Separ. Sci. Technol. 34 (1999) 45-58.

[2] V.V. Ivanov y F.A. Dolgikh, Rusia. Patent 2187388 (2002).

[3] y. Zhao, Z. Zhao, J. Cao y T. Feng, People Republic China. Patent 1299881. (2001).

[4] Z. Wang, W. Li y J. Zhao, Taiyuan Gongye Daxue Xuebao 26 (1995) 77-82.

[5] D. Tu, T. Liu y J. Sun, People Republic China. Patent 1092743, (1994).

[6] J. Pemcheva, Kliment Okhridski 87 (1995) 85-90.

[7] A. Mori, y. Tokida y K. Maki, Japan. Patent núm. 11092139, (1999).

[8] D. Li, D. Ruan, T. Zhang y W. Guo, Huaxue Shijie 29 (1998) 15-23.

[9] J. Neweaster, J. Ind. Miner. 395 (2000) 49-55.

[10] J. Neweaster, J. Ind. Miner. 395 (2000) 56-62.

[11] I. Pelovski. K. Ninova y I. Grunchariv, J. Thermal Anal. 36 (1990) 37-43.

[12] C. Ricardo, R. Acosta y R. López, Rev. Cub. Quím. 10 (1998) 23-27.

[13] D. yuan, Guangzhou Huagong 26 (1998) 18-21.

[14] A.N. Gokarn, S. Pradmam y G. Pathak, Fuel 79 (2000) 821-827. doi:10.1016/S0016-2361(99)00202-1

[15] S. Jagtap, A. Pande y N. Gokarn, Ind. Eng. Chem. 29 (1990) 795-799. doi:10.1021/ie00101a014

[16] L.A. Malysh, L.G. Gaisin y M.F. Volkova, Russ. J. Appl. Chem. 75 (2002) 14-17. doi:10.1023/A:1015592117853

[17] K. J. Rao, y B. Vaidhyanathan, Chem. Mater. 11 (1999) 882-895. doi:10.1021/cm9803859

[18] L. Perreux, A. Loupy y M. Delmotte, Tetrahedron 59 (2003) 2.185-2.189.

[19] A. Loupi, L. Perreux, M. Liagre, K. Burle y M. Moneuse, Pure Appl. Chem. 73 (2001) 161-66. doi:10.1351/pac200173010161

[20] L. Perreux, A. Loupi y F. Volatron, Tetrahedron 58 (2002) 2.155-2.162.

[21] J.Gutierrez-Paredes, A. Romero-Serrano, M.A. Hernandez, F.Chavez-Alcala y B. Zeifret, Rev. Metal. Madrid Vol. Extr. (2005) 443-446.

[22] J. Powder Diffraction Fase, 2000.

[23] O. Quesada y J.C. Llopiz, Universidad de La Habana, Cuba. Patente núm. 22863, 2003.

[24] W. Ricardo, O Quesada y J.C. Llopiz, Tesis de grado, Universidad de Oriente, Cuba, 2000.

[1] A. N. Gokarn, A.G. Gaikwad y C.A. Phalak, J. Separ. Sci. Technol. 34 (1999) 45-58.

[2] V.V. Ivanov y F.A. Dolgikh, Rusia. Patent 2187388 (2002).

[3] y. Zhao, Z. Zhao, J. Cao y T. Feng, People Republic China. Patent 1299881. (2001).

[4] Z. Wang, W. Li y J. Zhao, Taiyuan Gongye Daxue Xuebao 26 (1995) 77-82.

[5] D. Tu, T. Liu y J. Sun, People Republic China. Patent 1092743, (1994).

[6] J. Pemcheva, Kliment Okhridski 87 (1995) 85-90.

[7] A. Mori, y. Tokida y K. Maki, Japan. Patent núm. 11092139, (1999).

[8] D. Li, D. Ruan, T. Zhang y W. Guo, Huaxue Shijie 29 (1998) 15-23.

[9] J. Neweaster, J. Ind. Miner. 395 (2000) 49-55.

[10] J. Neweaster, J. Ind. Miner. 395 (2000) 56-62.

[11] I. Pelovski. K. Ninova y I. Grunchariv, J. Thermal Anal. 36 (1990) 37-43.

[12] C. Ricardo, R. Acosta y R. López, Rev. Cub. Quím. 10 (1998) 23-27.

[13] D. yuan, Guangzhou Huagong 26 (1998) 18-21.

[14] A.N. Gokarn, S. Pradmam y G. Pathak, Fuel 79 (2000) 821-827. doi:10.1016/S0016-2361(99)00202-1

[15] S. Jagtap, A. Pande y N. Gokarn, Ind. Eng. Chem. 29 (1990) 795-799. doi:10.1021/ie00101a014

[16] L.A. Malysh, L.G. Gaisin y M.F. Volkova, Russ. J. Appl. Chem. 75 (2002) 14-17. doi:10.1023/A:1015592117853

[17] K. J. Rao, y B. Vaidhyanathan, Chem. Mater. 11 (1999) 882-895. doi:10.1021/cm9803859

[18] L. Perreux, A. Loupy y M. Delmotte, Tetrahedron 59 (2003) 2.185-2.189.

[19] A. Loupi, L. Perreux, M. Liagre, K. Burle y M. Moneuse, Pure Appl. Chem. 73 (2001) 161-66. doi:10.1351/pac200173010161

[20] L. Perreux, A. Loupi y F. Volatron, Tetrahedron 58 (2002) 2.155-2.162.

[21] J.Gutierrez-Paredes, A. Romero-Serrano, M.A. Hernandez, F.Chavez-Alcala y B. Zeifret, Rev. Metal. Madrid Vol. Extr. (2005) 443-446.

[22] J. Powder Diffraction Fase, 2000.

[23] O. Quesada y J.C. Llopiz, Universidad de La Habana, Cuba. Patente núm. 22863, 2003.

[24] W. Ricardo, O Quesada y J.C. Llopiz, Tesis de grado, Universidad de Oriente, Cuba, 2000.

Downloads

Published

2007-12-30

How to Cite

Quesada, O., Llópiz, J. C., Martínez, E., Otero, K., Acosta, R. M., & Ricardo, W. (2007). Cuban barite characterization and its carbothermic reduction in microwave oven. Revista De Metalurgia, 43(6), 458–463. https://doi.org/10.3989/revmetalm.2007.v43.i6.88

Issue

Section

Articles

Most read articles by the same author(s)