Development of an artificial lock for the skin-pass section in a hot dip


  • A. González-Marcos Departamento de Ingeniería Eléctrica y Electrónica, Universidad de León
  • J. B. Ordieres-Meré Departamento de Ingeniería Mecánica, Universidad de La Rioja
  • A. V. Pernía-Espinoza Departamento de Ingeniería Mecánica, Universidad de La Rioja
  • V. Torre-Suárez Centro de Desarrollo Tecnológico, Arcelor España, S.A.



Hot dip galvanised steel, Skin-pass, Data mining, Neural networks, Artificial lock


In this paper, we present the application of data mining techniques to develop an “artificial lock” for the skin-pass in an attempt to solve a problem that can arise during the galvanising manufacturing process: the wrong labelling of the steel grade of a coil. In order to detect these errors and thus to avoid that coils with different properties than expected end up with a client, we propose neural network-based models for on-line predicting the strip elongation in the skin-pass section according to the manufacturing conditions and its chemical composition. Thus, a significant difference between estimated and measured elongation would mean that the coil must be removed from the line for further analyses.


Download data is not yet available.


[1] J.B. Ordieres-Meré, A. González-Marcos, J.A. González y V. Lobato-Rubio, Ironmaking Steelmaking 31 (2004) 43-50. doi:10.1179/030192304225012060

[2] A.V. Pernía-Espinoza, M. Castejón-Limas, A. González-Marcos y V. Lobato-Rubio, Ironmaking Steelmaking 32 (2005) 418-426. doi:10.1179/174328105X28829

[3] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, R. Reinartz, C. Shearer y R. Wirth, CRISP-DM 1.0: Step-by-step data mining guide, CRISP-DM consortium / SPSS Inc., 2000.

[4] D. Pyle, Data Preparation for Data Mining, Morgan Kaufmann Publishers, San Francisco, EE.UU., 1999, pp. 9-44.

[5] R.J. Brachman y T. Anand, Advances in knowledge discovery and data mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth y R. Uthurusamy (Eds.), AAAI Press/The MIT Press, Menlo Park, CA, EE.UU., 1996, pp. 37-57.

[6] U. Fayyad, G. Piatetsky-Shapiro y P. Smyth, Proc. KDD-96, Portland, Oregon, 1996, E. Simoudis, J. Han y U. Fayyad (Eds.), AAAI Press, Menlo Park, CA, EE.UU., 1996, pp. 82-88.

[7] R. Bellman, Adaptive Control Processes: A Guided Tour, Princeton University Press, New Jersey, EE.UU., 1961.

[8] M. Castejón-Limas, J.B. Ordieres-Meré, F.J. Martínez De Pisón-Ascacíbar y E. Vergara-González, Data Min. Knowl. Disc. 9 (2004) 171-187. doi:10.1023/B:DAMI.0000031630.50685.7c

[9] G.J. Mclachlan, Discriminant analysis and statistical pattern recognition, John Wiley & Sons, New York, EE.UU., 1992.

[10] K. Funahashi, Neural Netw. 2 (1989) 183-192. doi:10.1016/0893-6080(89)90003-8

[11] K. Hornik, M. Stinchcombe Y H. White, Neural Networks 2 (1989) 359-366. doi:10.1016/0893-6080(89)90020-8

[12] S. Haykin, Neural networks, a comprehensive foundation, Prentice Hall, 2ª ed., New Jersey, EE.UU., 1999, pp. 146-255.

[13] The R Project for Statical Computing.

[14] Institute for parallel and distributed high performance systems. SNNS-Stutgart Neural Network Simulator.




How to Cite

González-Marcos, A., Ordieres-Meré, J. B., Pernía-Espinoza, A. V., & Torre-Suárez, V. (2008). Development of an artificial lock for the skin-pass section in a hot dip. Revista De Metalurgia, 44(1), 29–38.