Assessment of fatigue crack length via plastic deformation in compact tension specimens using magnetic Barkhausen noise

Authors

  • F. de los Reyes-Rodríguez Dpto. de Manufactura y Materiales, Facultad de Ingeniería Mecánica, Universidad de Oriente
  • G. de Diego-Velasco Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT)
  • J. Capó-Sánchez Dpto. de Física, Facultad de Ciencias Naturales, Universidad de Oriente
  • E. Franco-Fidalgo Dpto. de Manufactura y Materiales, Facultad de Ingeniería Mecánica, Universidad de Oriente

DOI:

https://doi.org/10.3989/revmetalm.1268

Keywords:

Heat resistant steel, Plastic deformation, Magnetic Barkhausen noise, Pre-cracking, Crack

Abstract


In this paper the influence of different parameters on crack length is determined via plastic deformation using magnetic Barkhausen noise; the compact specimens steel used in this study were 12Cr1MoV and 11Cr1Mo, which are used for steam transportation on power plants. The main objective of this paper is to determine the crack length and its incubation time using magnetic Barkhausen noise, which lets to improve the pre-cracking process prior creep crack growth rate test simulating the real conditions of high pressure and temperature of main steam lines. Results showed that mean root square and maximum pick of voltage decrease with plastic deformation for each steel analyzed in this work, on the other hand, with the increasing of plastic deformation, a logic relationship between plastic deformation and spectrum density is observed for mid frequencies values, as well as, a variation of the amplitude, width and shape of the Barkhausen signal envelope.

Downloads

Download data is not yet available.

References

[1] W. Soonho, H. Yangki, C. Kyungshik y L. Jaedo, Key Engineering Materials 27 (2004) 70-74.

[2] J. Storesund, B. Kjeld y Z. Weilin, International Journal of Pressure Vessels and Piping 83 (2006) 875-883. http://dx.doi.org/10.1016/j.ijpvp.2006.08.015

[3] J. Zhao, S. Han, H. Gao y L. Wang, International Journal of Pressure Vessels and Piping 81 (2004) 757-760. http://dx.doi.org/10.1016/j.ijpvp.2004.05.002

[4] A. Baltusnikas, R. Levinskas y I. Lukosiute, Material Science (Medžiagotyra) 13 (2007) 286-292.

[5] A. Baltusnikas, R. Levinskas y I. Lukosiute, Material Science (Medžiagotyra) 14 (2008) 210-214.

[6] H. Andersson, C.M. Rolf y B. Sandstrom, International Journal of Pressure Vessels and Piping 78 (2001) 749-755. http://dx.doi.org/10.1016/S0308-0161(01)00086-2

[7] K. Bong Yoon, P. Tae Gyu y S. Ashok, International Journal of Pressure Vessels and Piping 80 (2003) 465-479. http://dx.doi.org/10.1016/S0308-0161(03)00101-7

[8] K. Wsamer, K.M. Nikbin y G.A. Webster, International Journal of Pressure Vessels and Piping 80 (2003) 489-498. http://dx.doi.org/10.1016/S0308-0161(03)00103-0

[9] L. Witek, Engineering Failure Analysis 10 (2009) 122-127.

[10] ASTM E1457-00, Standard test method for measurement of creep crack growth rates in metals, 2000.

[11] F. de los Reyes Rodríguez, Tesis doctoral, Universidad de Oriente, Cuba, 2012, p. 106.

[12] H. Barkhausen, Physik. Z. 20 (1919) 401.

[13] S. Yamaura, Y. Furuya y T. Watanabe, Acta Mater. 49 (2001) 3.019-3.027.

[14] G. Bertotti y A. Montorsi, J. Magn. Magn. Mater. 83 (1990) 214-216. http://dx.doi.org/10.1016/0304-8853(90)90490-H

[15] M.F. de Campos, F.A. Franco, R. Santos, F.S. da Silva, S.B. Ribeiro, J.F. Lins y L.R. Padovese, Joint European Magnetic Symposia (JEMS 2011), J. Spalek, Ed. Publishing Ltd. Bristol, 2011.

[16] T. Inaguma, H. Sakamoto y M. Hasegawa, J. Appl. Phys. 111 (2012) 063903.1-063903.9. http://dx.doi.org/10.1063/1.3694017

[17] I. Altpeter, Journal of Nondestructive Evaluation 15 (1996) 45-60. http://dx.doi.org/10.1007/BF00729134

[18] L.Piotrowski, B. Augustyniaka, M. Chmielewskia e I. Tomáša, J. Magn. Magn. Mater. 321 (2009) 2.331-2.335. http://dx.doi.org/10.1016/j.jmmm.2009.02.028

[19] C.G. Stefanita, D.L Atherton y L. Clapham, Acta Mater. 48 (2000) 3.545-3.551.

[20] C.G. Stefanita, L. Clapham y D.L. Atherton, Review of Progress in Quantitative Nondestructive Evaluation, Vols, 19 a and 19 b, Ed. Thompson, Canadá, 2000, pp. 1.541-1.548.

[21] O. Stupakov y I.Tomas, NDT & E International 39 (2006) 554-561. http://dx.doi.org/10.1016/j.ndteint.2006.04.001

[22] M.J. Sablik, J. Appl. Phys. 89 (2001) 5.610-5.613. http://dx.doi.org/10.1063/1.1330549

[23] O. Stupakov, J. Pal'ac, I. Tomáša, J. Bydžovskýc y V. Novák, Mater. Sci. Eng. A 462 (2007) 351-354. http://dx.doi.org/10.1016/j.msea.2006.02.475

[24] F. Beck, R.C. Gomesa, K.D. Sossmeiera, F. Bohnb y M. Carara, J. Magn. Magn. Mater. 323 (2011) 268-271. http://dx.doi.org/10.1016/j.jmmm.2010.09.011

[25] W. Grosse-Nobis, J. Magn. Magn. Mater. 4 (1977) 247-253. http://dx.doi.org/10.1016/0304-8853(77)90043-9

[26] G. Manson y G. Hoffmann, J. Phys. D-Appl. Phys. 5 (1972) 1.389. http://dx.doi.org/10.1088/0022-3727/5/1/304

[27] V. Moorthy, B.A. Shawa, P. Mountfordb y P.Hopkinsb,Acta Mater. 53 (2005) 4.997-5.006. http://dx.doi.org/10.1016/j.actamat.2005.06.029

Downloads

Published

2013-08-30

How to Cite

de los Reyes-Rodríguez, F., de Diego-Velasco, G., Capó-Sánchez, J., & Franco-Fidalgo, E. (2013). Assessment of fatigue crack length via plastic deformation in compact tension specimens using magnetic Barkhausen noise. Revista De Metalurgia, 49(4), 275–283. https://doi.org/10.3989/revmetalm.1268

Issue

Section

Articles