Biocompatibilidad de osteoblastos e inhibición de adhesión bacteriana a la aleación Ti6Al4V tratada térmica y químicamente

Autores/as

  • Greta Tavarez-Martínez National Polytechnic Institute, Centro de Investigación Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira, Km 14.5 Carretera Tampico-Puerto Industrial, 89600 Altamira, Tamaulipas https://orcid.org/0000-0002-2625-3052
  • Belén Criado Spanish National Research Council, National Center for Metallurgical Research (CSIC, CENIM), Department of Surface Engineering, Corrosion and Durability, Avda. Gregorio del Amo 8, 28040 Madrid https://orcid.org/0000-0002-5486-9604
  • M. Coronada Fernández-Calderón Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine Network (CIBER-BBN), Badajoz. University of Extremadura, Faculty of Medicine and INUBE, Department of Biomedical Sciences, Area of Microbiology https://orcid.org/0000-0001-8567-6787
  • Edgar Onofre-Bustamante National Polytechnic Institute, Centro de Investigación Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira, Km 14.5 Carretera Tampico-Puerto Industrial, 89600 Altamira, Tamaulipas https://orcid.org/0000-0002-5706-887X
  • Ciro Pérez-Giraldo Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine Network (CIBER-BBN), Badajoz. University of Extremadura, Faculty of Medicine and INUBE, Department of Biomedical Sciences, Area of Microbiology https://orcid.org/0000-0002-2358-1982
  • Cristina García-Alonso Spanish National Research Council, National Center for Metallurgical Research (CSIC, CENIM), Department of Surface Engineering, Corrosion and Durability, Avda. Gregorio del Amo 8, 28040 Madrid https://orcid.org/0000-0003-0275-4626
  • Mª Lorenza Escudero Spanish National Research Council, National Center for Metallurgical Research (CSIC, CENIM), Department of Surface Engineering, Corrosion and Durability, Avda. Gregorio del Amo 8, 28040 Madrid https://orcid.org/0000-0002-2181-448X

DOI:

https://doi.org/10.3989/revmetalm.208

Palabras clave:

Depósito de nanoceria, Osteoblastos MC3T3-E1, Staphylococcus epidermis, TiAlV, Tratamiento térmico

Resumen


El objetivo de este trabajo ha sido estudiar si los tratamientos térmicos y de conversión química mejoran la biocompatibilidad de la aleación TiAlV y reducen el crecimiento bacteriano. En primer lugar, se modificó la aleación de TiAlV mediante tratamiento térmico a 650 ºC durante 1 hour. Luego, se llevó a cabo la conversión química en una solución de CeCl3 para generar óxido de cerio. Las superficies modificadas se caracterizaron utilizando AFM y SEM-EDX. La adhesión de osteoblastos y la formación de biopelículas microbianas se midieron in vitro con la línea celular de osteoblastos MC3T3-E1 y Staphylococcus epidermidis ATCC 35983, respectivamente. La viabilidad bacteriana se cuantificó a través del contenido en trifosfato de adenosina (ATP) como medida de la actividad metabólica. La morfología y la proliferación en superficies modificadas se analizaron mediante SEM-EDX. Los resultados revelaron que el TiAlV tratado térmicamente mostró una mayor proliferación osteoblástica asociada con una mayor rugosidad y estructura cristalina del rutilo. Las superficies modificadas no causaron efecto bactericida, pero las superficies de TiAlV con ceria mostraron una disminución en la adhesión bacteriana, es decir, menos proliferación bacteriana y por tanto disminución en la colonización bacteriana.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmed, M.H., Byrne, J.A., Keyes, T.E., Ahmed, W., Elhissi, A., Jackson, J., Ahmed, E. (2012). Characteristics and applications of titanium oxide as a biomaterial for medical implants. in The Design and Manufacture of Medical Devices. Woodhead Publising, Oxford Cambridge Philadelphia New Delhi, pp. 1-57. https://doi.org/10.1533/9781908818188.1

Alpaslan, E., Geilich, B.M., Yazici, H., Webster, T.J. (2017). pH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth. Sci. Rep. 7, 45859. https://doi.org/10.1038/srep45859 PMid:28387344 PMCid:PMC5384081

Anselme, K., Bigerelle, M. (2005). Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater. 1 (2), 211-222. https://doi.org/10.1016/j.actbio.2004.11.009 PMid:16701798

Ayu, H.M., Izman, S., Daud, R., Krishnamurithy, G., Shah, A., Tomadi, S.H., Salwani, M.S. (2017). Surface Modification on CoCrMo Alloy to Improve the Adhesion Strength of Hydroxyapatite Coating. Procedia Eng. 184 399-408. https://doi.org/10.1016/j.proeng.2017.04.110

Azimi, G., Dhiman, R., Kwon, H.-M., Paxson, A.T., Varanasi, K.K. (2013). Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315-320. https://doi.org/10.1038/nmat3545 PMid:23333998

Bauer, S., Schmuki, P., von der Mark, K., Park, J. (2013). Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Prog. Mater. Sci. 58 (3), 261-326. https://doi.org/10.1016/j.pmatsci.2012.09.001

Boyd, R.D., Verran, J., Jones, M.V., Bhakoo, M. (2002). Use of the Atomic Force Microscope to determine the effect of substratum surface topography on bacterial adhesion. Langmuir 18 (6), 2343-2346. https://doi.org/10.1021/la011142p

Bral, A., Mommaerts, M.Y. (2016). In vivo biofunctionalization of titanium patient-specific implants with nano hydroxyapatite and other nano calcium phosphate coatings: A systematic review. J. Cranio-Maxillofacial Surg. 44 (4), 400-412. https://doi.org/10.1016/j.jcms.2015.12.004 PMid:26857757

Brunelli, K., Dabalà, M., Calliari, I., Magrini, M. (2005). Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys. Corros. Sci. 47 (4), 989-1000. https://doi.org/10.1016/j.corsci.2004.06.016

Bueno-Vera, J.A., Torres-Zapata, I., Sundaram, P.A., Diffoot-Carlo, N., Vega-Olivencia, C.A. (2015). Electrochemical characterization of MC3T3-E1 cells cultured on γTiAl and Ti-6Al-4V alloys. Bioelectrochemistry 106 (Par B), 316-327. https://doi.org/10.1016/j.bioelechem.2015.06.012 PMid:26145813 PMCid:PMC4565729

Burgos Asperilla, L. (2013). Caracterización y estudio electroquímico de superficies de Ti inmersas en medio fisiológico y en cultivo celular. Tesis PhD, Universidad Autónoma de Madrid.

Cerroni, L., Filocamo, R., Fabbri, M., Piconi, C., Caropreso, S., Condò, S.G. (2002). Growth of osteoblast-like cells on porous hydroxyapatite ceramics: an in vitro study. Biomol. Eng. 19 (2-6), 119-124. https://doi.org/10.1016/S1389-0344(02)00027-8

Ciobanu G., Harja, M. (2019). Cerium-doped hydroxyapatite/collagen coatings on titanium for bone implants. Ceram. Int. 45 (2), 2852-2857. https://doi.org/10.1016/j.ceramint.2018.07.290

Díaz-Gómez, L., Concheiro, A., Álvarez-Lorenzo, C. (2018). Functionalization of titanium implants with phase-transited lysozyme for gentle immobilization of antimicrobial lysozyme. Appl. Surf. Sci. 452, 32-42. https://doi.org/10.1016/j.apsusc.2018.05.024

Donlan, R.M. (2002). Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8 (9), 881-890. https://doi.org/10.3201/eid0809.020063 PMid:12194761 PMCid:PMC2732559

Fathi, M.H., Salehi, M., Saatchi, A., Mortazavi, V., Moosavi, S.B. (2003). In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Dent. Mater. 19 (3), 188-198. https://doi.org/10.1016/S0109-5641(02)00029-5

Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Prog. Mater. Sci. 54, 397-425. https://doi.org/10.1016/j.pmatsci.2008.06.004

Germán-Salló, Z., Strnad, G. (2018). Signal processing methods in fault detection in manufacturing systems. Procedia Manuf. 22, 613-620. https://doi.org/10.1016/j.promfg.2018.03.089

Hernández-López, J.M., Conde, A., de Damborenea, J.J., Arenas, M.A. (2016). Electrochemical response of TiO2 anodic layers fabricated on Ti6Al4V alloy with nanoporous, dual and nanotubular morphology. Corros. Sci. 112, 194-203. https://doi.org/10.1016/j.corsci.2016.07.021

Izman, S., Abdul-Kadir, M.R., Anwar, M., Nazim, E.M., Rosliza, R., Shah, A., Hassan, M.A., (2012). Surface Modification Techniques for Biomedical Grade of Titanium Alloys: Oxidation, Carburization and Ion Implantation Processes. In Titanium Alloys. Chapter 9, IntechOpen, Rijeka. https://doi.org/10.5772/36318

Jackson, M.J., Ahmed W. (2007). Titanium and Titanium Alloy Applications in Medicine. In Surface Engineered Surgical Tools and Medical Devices. Springer US, Boston, pp. 533-576. https://doi.org/10.1007/978-0-387-27028-9_15

Jenko, M., Gorenšek, M., Godec, M., Hodnik, M., Batič, B.Š., Donik, Č.J., Grant, T., Dolinar, D. (2018). Surface chemistry and microstructure of metallic biomaterials for hip and knee endoprostheses. Appl. Surf. Sci. 427, 584-593. https://doi.org/10.1016/j.apsusc.2017.08.007

Kasemo, B., Lausmaa, J. (1988). Biomaterial and implant surfaces: a surface science approach. Int. J. Oral Maxillofac. Implants 3 (4), 247-259.

Madigan, M.T., Martinko, J.M., Parker, J. (2003). Brock. Biología de los microorganismos. 10th ed., Pearson Educación, Madrid.

Mareci, D., Lucero, V., Mirza, J. (2009). Effect of replacement of vanadium by iron on the electrochemical behaviour of titanium alloys in simulated physiological media. Rev. Metal. 45 (1), 32-41. https://doi.org/10.3989/revmetalm.0750

Niinomi, M. (2002). Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 33, 477. https://doi.org/10.1007/s11661-002-0109-2

Patton, K.T., Thibodeau, G.A. (2007). Anatomía y Fisiología. 6th ed., Elsevier, Barcelona.

Pelletier, D.A., Suresh, A.K., Holton, G.A., McKeown, C.K., Wang, W., Gu, B., Mortensen, N.P., Allison, D.P., Joy, D.C., Allison, M.R., Brown, S.D., Phelps, T.J., Doktycz, M.J. (2010). Effects of Engineered Cerium Oxide Nanoparticles on Bacterial Growth and Viability. Appl. Environ. Microbiol. 76 (24), 7981 - 7989. https://doi.org/10.1128/AEM.00650-10 PMid:20952651 PMCid:PMC3008265

Peng, M.J., Duan, Y.H., Ma, L.S., Shu, B.P. (2018). Characteristics of surface layers on Ti6Al4V alloy borided with CeO2 near the transition temperature. J. Alloys Compd. 769, 1-9. https://doi.org/10.1016/j.jallcom.2018.07.365

Raphel, J., Holodniy, M., Goodman, S.B., Heilshorn, S.C. (2016). Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials 84, 301-314. https://doi.org/10.1016/j.biomaterials.2016.01.016 PMid:26851394 PMCid:PMC4883578

Santander, S., Alcaine, C., Lyahyi, J., Pérez, M.A., Rodellar, C., Doblaré, M., Ochoa, I. (2014). In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants. Dent. Mater. J. 33 (3), 305-312. https://doi.org/10.4012/dmj.2012-015-r PMid:24882108

Santos-Coquillat, A., Gonzalez Tenorio, R., Mohedano, M., Martinez-Campos, E., Arrabal, R., Matykina, E. (2018). Tailoring of antibacterial and osteogenic properties of Ti6Al4V by plasma electrolytic oxidation. Appl. Surf. Sci. 454, 157-172. https://doi.org/10.1016/j.apsusc.2018.04.267

Schanen, B.C., Das, S., Reilly, C.M., Warren, W.L., Self, W.T., Seal, S, Drake, D.R. (2013). Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles. PLOS ONE 8, e62816. https://doi.org/10.1371/journal.pone.0062816 PMid:23667525 PMCid:PMC3648566

Shcherbakov, A.B., Zholobak, N.M., Ivanov, V.K. (2020). Biological, biomedical and pharmaceutical applications of cerium oxide. In Metal Oxides Series Cerium oxide (CeO2): Synthesis, Properties and Applications. Elsevier, Amsterdam, 279-358. https://doi.org/10.1016/B978-0-12-815661-2.00008-6

Shivakumar, K., Nair, R.R., Valiathan, M.S. (1992). Paradoxical effect of cerium on collagen synthesis in cardiac fibroblasts. J. Mol. Cell. Cardiol. 24 (7), 775-780. https://doi.org/10.1016/0022-2828(92)93391-V

Simsek, I., Ozyurek, D. (2019). Investigation of the wear and corrosion behaviors of Ti5Al2.5Fe and Ti6Al4V alloys produced by mechanical alloying method in simulated body fluid environment. Mater. Sci. Eng. C 94, 357-363. https://doi.org/10.1016/j.msec.2018.09.047 PMid:30423718

Siqueira, R.P., Sandim, H.R.Z., Hayama, A.O.F., Henriques, V.A.R. (2009). Microstructural evolution during sintering of the blended elemental Ti-5Al-2.5Fe alloy. J. Alloys Compd. 476 (1-2), 130-137. https://doi.org/10.1016/j.jallcom.2008.09.004

Sittig, C., Textor, M., Spencer, N.D., Wieland, M., Vallotton, P.H. (1999). Surface characterization. J. Mater. Sci. Mater. Med. 10, 35-46. https://doi.org/10.1023/A:1008840026907 PMid:15347992

Srivas, P.K., Kapat, K., Das, B., Pal, P., Ray, P.G., Dhara, S. (2019). Hierarchical surface morphology on Ti6Al4V via patterning and hydrothermal treatment towards improving cellular response. Appl. Surf. Sci. 478, 806-817. https://doi.org/10.1016/j.apsusc.2019.02.039

Tavarez Martínez, G. de M. (2019). Evaluación de recubrimientos TiO2-CeO2 sobre la aleación Ti6Al4V, mediante técnicas electroquímicas convencionales y de campo próximo en presencia de células vivas. Tesis (Maestría en Tecnología Avanzada), Instituto Politécnico Nacional. http://tesis.ipn.mx/handle/123456789/26595.

Tavarez-Martínez, G.M., Onofre-Bustamante, E., De La Cruz-Terrazas, E.C., Escudero-Rincón, M.L., Domínguez-Crespo, M.A. (2019). Evaluation of TiO2/CeO2 coating on Ti6Al4V alloy in PBS physiological medium using conventional and near field electrochemical techniques. Appl. Surf. Sci. 494, 1109-1118. https://doi.org/10.1016/j.apsusc.2019.07.066

Weng, Y., Liu, H., Ji, S., Huang, Q., Wu, H., Li, Z., Wu, Z., Wang, H., Tong, L., Fu, R.K.Y., Chu, P.K., Pan, F. (2018). A promising orthopedic implant material with enhanced osteogenic and antibacterial activity: Al2O3-coated aluminum alloy. Appl. Surf. Sci. 457, 1025-1034. https://doi.org/10.1016/j.apsusc.2018.06.233

Wu, S., Liu, X., Yeung, K.W.K., Liu, C., Yang, X. (2014). Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R Reports 80, 1-36. https://doi.org/10.1016/j.mser.2014.04.001

Yang, D.H., Moon, S.W., Lee, D.-W. (2017). Surface Modification of Titanium with BMP-2/GDF-5 by a Heparin Linker and Its Efficacy as a Dental Implant. Int. J. Mol. Sci. 18 (1), 229. https://doi.org/10.3390/ijms18010229 PMid:28124978 PMCid:PMC5297858

Yu, X., Ibrahim, M., Lu, S., Yang, H., Tan, L., Yang, K. (2018). MgCu coating on Ti6Al4V alloy for orthopedic application. Mater. Lett. 233, 35-38. https://doi.org/10.1016/j.matlet.2018.08.063

Zorn, G., Baio, J.E., Weidner, T., Migonney, V., Castner, D.G. (2011). Characterization of Poly(sodium styrene sulfonate). Thin Films Grafted from Functionalized Titanium Surfaces. Langmuir 27, 13104-13112. https://doi.org/10.1021/la201918y PMid:21892821 PMCid:PMC3202038

Publicado

2021-12-30

Cómo citar

Tavarez-Martínez, G., Criado, B., Coronada Fernández-Calderón, M., Onofre-Bustamante, E., Pérez-Giraldo, C., García-Alonso, C., & Lorenza Escudero, M. (2021). Biocompatibilidad de osteoblastos e inhibición de adhesión bacteriana a la aleación Ti6Al4V tratada térmica y químicamente. Revista De Metalurgia, 57(4), e208. https://doi.org/10.3989/revmetalm.208

Número

Sección

Artículos

Datos de los fondos

Consejo Nacional de Ciencia y Tecnología, Paraguay
Números de la subvención 2012 #183416

Ministerio de Economía y Competitividad
Números de la subvención MAT2015-63974-C4-4-R

Ministerio de Ciencia e Innovación
Números de la subvención RTI2018-101506-B-C31

Junta de Extremadura
Números de la subvención GR18096