Revista de Metalurgia, Vol 50, No 2 (2014)

Hacia las altas prestaciones en Pulvimetalurgia


https://doi.org/10.3989/revmetalm.017

José M. Torralba
Universidad Carlos III de Madrid - IMDEA Materials Institute, España

Mónica Campos
Universidad Carlos III de Madrid, España

Resumen


La Pulvimetalurgia es una tecnología bien conocida por su faceta de producir piezas de forma masiva a bajo coste, pero habitualmente con una pérdida de propiedades mecánicas si se la compara con tecnologías alternativas para obtener las mismas piezas. Sin embargo, mediante esta tecnología, también se pueden obtener piezas de altas prestaciones, dependiendo de la ruta de procesado y del nivel de porosidad. En este trabajo, se realiza una sucinta revisión de las posibilidades de la tecnología de polvos que permitirían obtener los mayores niveles de prestaciones en cuanto a propiedades mecánicas y físicas. Se pueden elegir distintas estrategias en el procesado: actuar sobre el nivel de densidad/porosidad y las propiedades de los poros, actuar sobre mecanismos de endurecimiento distintos a la densidad (el sistema de aleación, la microestructura, el tamaño de grano,…), mejorar la activación durante la sinterización y utilizar técnicas que inhiban el tamaño de grano durante la sinterización.

Palabras clave


Materiales avanzados; Pulvimetalurgia

Texto completo:


HTML PDF XML

Referencias


Alvaredo, P., Gordo, E., van der Biest, O.,Vanmeensel, K. (2012). Microstructural development and mechanical properties of iron based cermets processed by pressureless and spark plasma sintering. Mater. Sci. Eng. A 538, 28–34. http://dx.doi.org/10.1016/j.msea.2011.12.107

Anselmi-Tamburini, U., Gennari, S., Garay, J.E., Munir, Z.A. (2005). Fundamental investigations on the spark plasma sintering/synthesis process II. Modelling of current and temperature distributions. Mater. Sci. Eng. A 394, 139–148. http://dx.doi.org/10.1016/j.msea.2004.11.019

Atkinson, H.V., Davies, S. (2000). Fundamental aspects of hot isostatic pressing: an overview. Metall. Mater. Trans. A 31A, 2981–3000. http://dx.doi.org/10.1007/s11661-000-0078-2

Baird, K.S., Williams, J.D., (1984). Relationships between process variables and density of explosively compacted iron powder. Int. J. Powder Metall. 20, 23–32.

Benjamin, T.S. (1970). Dispersion strengthened superalloys by mechanical alloying. Metall. Trans. 1, 2943–2951.

Blanco, L., Campos, M., Torralba, J.M., Klint, D. (2005). Quantitative Evaluation of Porosity Effects in Sintered and Heat Treated High Performance Steels. Powder Metall. 48, 315–322. http://dx.doi.org/10.1179/174329005X82199

Cambronero, L.E.G., Gordo, E., Torralba, J.M., Ruiz-Prieto, J.M. (1996). Comparative study of high speed steels obtained through explosive compaction and hot isostatic pressing. Mater. Sci. Eng. A 207A, 36–45. http://dx.doi.org/10.1016/0921-5093(95)09978-6

Campos, M., Blanco, L., Sicre-Artalejo, J., Torralba, J.M. (2008). High performance low alloy steels: Up date. Rev. Metal. 44, 5–12. http://dx.doi.org/10.3989/revmetalm.2008.v44.i1.90

Chen, W., Anselmi-Tamburini, U., Garay, J.E., Groza, J.R., Munir, Z.A. (2005). Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of dc pulsing on reactivity. Mater. Sci. Eng. A 394, 132–138. http://dx.doi.org/10.1016/j.msea.2004.11.020

da Costa, C.E. (1998). Aluminium matrix composites reinforced with intermetallics obtained by poder metallurgy. Tesis Doctoral, Universidad Politécnica de Madrid. Danninger, H., Spoljaric, D., Weiss, B. (1997). Microstructural Features Limiting the Performance of P/M Steels. Int. J. Powder Metall. 33, 43–53.

Danninger, H., Weiss, B. (2002). High Cycle Fatigue of Powder Metallurgy Materials. Actas del VIII Congreso Nacional de Propiedades Mecánicas de Sólidos. Gandía, España, 195–204.

Das, S.K., Davis, L.A. (1998). High performance aerospace alloys via rapid solidification processing. Mater. Sci. Eng. A 98, 1–12. http://dx.doi.org/10.1016/0025-5416(88)90116-4

Delaizir, G., Bernard-Granger, J., Monnier, R., Grodzki, O., Kim-Hak, P.D., Szkutnik, M., Soulier, S., Saunier, D., Goeuriot, O., Rouleau, J., Simon, C., Godart, C., Navone, C. (2012). A comparative study of Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater. Res. Bull. 47, 1954–1960. http://dx.doi.org/10.1016/j.materresbull.2012.04.019

Dore, F., Lazzarotto, L., Bourdin, S. (2007). High velocity compaction: overview of materials, applicationand potential. Mater. Sci. Forum. 534–536, 293–296. http://dx.doi.org/10.4028/www.scientific.net/MSF.534-536.293

European Powder Metallurgy Association, (2014). http://www.epma.com/New_non_members/economic_advantages.htm

Fogagnolo, J.B., Robert, M.H., Torralba, J.M. (2006). Mechanically alloyed AlN particle-reinforced Al-6061 matrix composites: Powder processing, consolidation and mechanical strength and hardness of the as-extruded materials. Mater. Sci. Eng. A 426, 85–94. http://dx.doi.org/10.1016/j.msea.2006.03.074

García, P., Campos, M., Torralba, J.M. (2013). Consistencia dimensional en cubos de sincronización de alto rendimiento. Rev. Metal. 49, 55–64. http://dx.doi.org/10.3989/revmetalm.1218 http://dx.doi.org/10.3989/revmetalm.1218

German, R.M. (1994). Powder Metallurgy Science, 2nd Ed., Metal Powder Industries Federation, Princeton, USA.

German, R.M., Suri, P., Park, S.J. (2009). Review: liquid phase sintering. J. Mater. Sci. 44, 1–39. http://dx.doi.org/10.1007/s10853-008-3008-0 http://dx.doi.org/10.1007/s10853-008-3008-0

Gordo, E., Oliva, A., Ruiz-Navas, E.M., Torralba, J.M. (2004). Desarrollo de materiales compuestos tipo Cermet de matriz Fe. Bol. Soc. Esp. Ceram. V. 43 (2), 416–419. http://dx.doi.org/10.3989/cyv.2004.v43.i2.556

Höganäs Iron and Steel Powders for Sintered Components. Product Data Handbook: Powder grades & sintered properties. (2002), Höganäs, Sweden: Höganäs AB.

Jacobson, L.A., McKittrick, J. (1994). Rapid solidification processing. Mater. Sci. Eng. R. 11, 355–408. http://dx.doi.org/10.1016/0927-796X(94)90022-1

Lavernia, E.J., Srivatsan, T.S. (2010). The rapid solidification processing of materials: science, principles, technology, advances, and applications. J. Mater. Sci. 45, 287–325. http://dx.doi.org/10.1007/s10853-009-3995-5

Li, Y.Y., Ngai, T.L., Zhang, D.T., Long, Y., Xia, W. (2002). Effect of die wall lubrication on warm compaction powder metallurgy. J. Mater. Process. Tech. 129, 354–358. http://dx.doi.org/10.1016/S0924-0136(02)00648-9

Long, W.M. (1960). Radial pressures in powder compaction. Powder Metallurgy 6, 73. Mamaedow, V. (2002). Spark plasma sintering as advanced PM sintering method. Powder Metall. 45 (4), 322–328.

Maroli, B., Berg, S., Thorne, P., Engström, U. (2003). Sinter-Hardening and Heat Treatments of Materials Based on Astaloy CrM. Proceedings of the PM2TEC2003 International Conference on Powder Metallurgy & Particulate Materials, Las Vegas, USA. 5, 149–161.

Mishra, R.S., Mukherjee, A.K. (2000). Electric pulse assisted rapid consolidation of ultrafine grained alumina matrix composites. Mater. Sci. Eng. A 287 (2), 178–182. http://dx.doi.org/10.1016/S0921-5093(00)00772-3

Molinari, A., Tesi, B., Bacci, T., Marcu, T. (2001). Plasma nitriding and nitrocarburising of sintered Fe-Cr-Mo and Fe-Cr-Mo-C alloys. Surf. Coat. Tech. 140 (3), 251–255. http://dx.doi.org/10.1016/S0257-8972(01)01040-4

Molinari, A., Menapace, C., Santuliana, E., Straffelini, G. (2011). A simplified model for the impact resistance of porous sintered steels. Powder Metallurgy Progress 11, 12–20.

Munir, Z.A., Anselmi-Tamburini, U., Ohyanagi, M. (2006). The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sinteing method. J. Mater. Sci. 41 (3), 763–777. http://dx.doi.org/10.1007/s10853-006-6555-2

Mu-oz-Moreno, R., Ruiz-Navas, E.M., Pérez-Prado, M.T., Boehlert, C.J., Torralba, J.M. (2013). Miscrostructural Development of a HIP'ed ?-Tial Intermetallic Alloy and In-Situ Analysis of the Deformation Mechanisms. Proceedings European Powder Metallurgy Conference, EUROPM 2013, Göteborg, Sweden.

Oro, R. (2012). Design of master alloys to develop liquid phase sintering of Mn-Si steels. Tesis Doctoral. Universidad Carlos III Madrid.

Oro, R., Campos, M., Torralba, J.M. (2012). Study of hightemperature wetting and infiltration for optimizing liquidphase sintering in low-alloy steels. Powder Metall. 55, 180–190. http://dx.doi.org/10.1179/1743290111Y.0000000007

Oro, R., Torralba, J.M., Campos, M. (2012a). Lean sintered steels obtained through the master alloy route: mechanical properties. Powder Metallurgy Progress 12, 159–167.

Oro, R., Campos, M., Torralba, J.M., Capdevilla, C. (2012b). Lean alloys in PM: from design to sintering performance. Powder Metall. 55. 294–301. http://dx.doi.org/10.1179/1743290112Y.0000000016

Oro, R., Campos, M., Hryha, E., Torralba, J.M., Nyborg, L. (2013). Surface phenomena during the early stages of sintering in steels modified with Fe-Mn-Si-C master alloys. Mater. Charact. 86, 80–91. http://dx.doi.org/10.1016/j.matchar.2013.07.022

Pimentel, G., Capdevila, C., Bartolomé, M.J., Chao, J., Serrano, M., García-Junceda, A., Campos, M., Torralba, J.M., Aldazábal, J. (2012). Aceros ODS FeCrAl avanzados para aplicaciones estructurales de alta temperatura en sistemas de generación de energía. Rev. Metal. 48, 303–316. http://dx.doi.org/10.3989/revmetalm.1165

Rao, G.A., Sankaranarayana, M., Balasubramaniam, S. (2012). Hot Isostatic Pressing Technology for Defence and Space Applications. Defence Sci. J. 62 (1), 73–80. http://dx.doi.org/10.14429/dsj.62.372

Roy, R., Agrawal, D., Cheng, J., Gedevanishvili, S. (1999). Full sintering of powdered-metal bodies in a microwave field. Nature 399, 668–670. http://dx.doi.org/10.1038/21390

Shon, I.J., Munir, Z.A. (1995). Synthesis of MoSi2-xNb and MoSi2-yZrO2 composites by the field-activated combustion method. Mater. Sci. Eng. A 202, 256. http://dx.doi.org/10.1016/0921-5093(95)09800-3

Stoyanova, V., Xu, C., Blanco, L., Molinari, A., Danninger, H., Torralba, J.M., Yu, Y., Lindquist, B. (2004). Influence of microstructure and porosity on static and dynamic mechanical properties of High Performance PM steels. Proceedings of the Euro PM2004, Vienna, Austria, pp. 47–62.

Stoyanova, V. (2005). Mechanical Properties of High Density Low Alloyed PM Steels: Effect of Sintering and Secondary Heat Treatments. Thesis Doctoral. University of Trento.

Sutton, W. (1989). Microwave processing of ceramic materials. Am. Ceram. Soc. Bull. 68, 376–386.

Taylor, G.F. (1933). US Patent n° 1896854, 1933.

Tengzelius, J. (2005). Advances in steel powders for high performance PM parts. PMAsia2005, Shanghai, April 4, 2005.

Tojal, C., Amigó, V., Calero, J.A. (2013). Fabricación y caracterización de aleaciones porosas de Ti y Ti6Al4V producidas mediante sinterización con espaciador. Rev. Metal. 49, 20–30. http://dx.doi.org/10.3989/revmetalm.1206

Tokita, M. (1999). Development of Large-size Ceramic/MetalBulk FGM. Fabricated by Spark Plasma Sintering. Mater. Sci. Forum 308–311, 83–88. http://dx.doi.org/10.4028/www.scientific.net/MSF.308-311.83

Torralba, J.M., Gordo, E., Velasco, F., Várez, A., Levenfeld, B. (2000). High speed steels made by conventional P/M route, hot isostatic pressing and metal injection moulding: comparative analysis. International Conference on Processing and Manufacturing of Advanced Materials, THERMEC 2000, Las Vegas, USA, 183.

Torralba, J.M., Oro, R., Campos, M. (2011). From sintered iron to high performance PM steels. Mater. Sci. Forum 672,3–11. http://dx.doi.org/10.4028/www.scientific.net/MSF.672.3

Torralba, J.M., Fuentes-Pacheco, L., García-Rodríguez, N., Campos, M. (2013). Development of high performance powder metallurgy steels by high-energy milling. Adv. Powder Technol. 24, 813–817. http://dx.doi.org/10.1016/j.apt.2012.11.015

Warzel III, R.T., Luk, Sy., Hofecker, P. (2012). Warm die compaction process to achieve higher green density and green strength. Advances in Powder Metallurgy & Particulate Materials, Vol. 1, Part. 3, Ed. MPIF, Princeton, USA.

Xie, G., Song, M., Mitsuishi, K., Furuya, K. (2005). Characterization of metal nanoparticles fabricated in ordered array pores of anodic porous alumina by electron-beam-induced selective deposition. Appl. Surf. Sci. 241 (1–2), 91–95. http://dx.doi.org/10.1016/j.apsusc.2004.09.023




Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es