Effect of Q&P parameters on microstructure development and mechanical behaviour of Q&P steels
DOI:
https://doi.org/10.3989/revmetalm.035Keywords:
Deformation, Mechanical properties, Phase transformation, Quenching and partitioning, Retained austenite, SteelsAbstract
Steel with a nominal composition of 0.25C–1.5Si–3Mn–0.023Al (mass %) was subjected to Quenching and Partitioning (Q&P) with varying parameters (quenching temperature, partitioning temperature and partitioning time) resulting in formation of multi-phase microstructure, which was thoroughly studied using X-ray (XRD) and Electron Backscatter Diffraction (EBSD). Mechanical properties of the Q&P steel were measured by tensile tests. Plastic deformation of Q&P steel at micro-scale was investigated by in situ tensile testing and digital image correlation analysis. The effect of Q&P parameters on the microstructure (phase composition, size and volume fraction of micro constituents, texture and carbon content in retained austenite) is discussed. After analyzing the mechanical properties, plastic deformation at the micro-scale and the microstructure, it is shown that the strain partitioning between phases strongly depends on the microstructure of the Q&P steel, which, in turn, can be tuned via manipulation with Q&P parameters.
Downloads
References
Ahn, T.H., Oh, C.S., Kim, D.H., Oh, K.H., Bei, H., George, E.P., Han, H.N. (2010). Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation. Scr. Mater. 63 (5), 540–543. http://dx.doi.org/10.1016/j.scriptamat.2010.05.024
Bhadeshia, H.K.D.H. (1999). The bainite transformation: unresolved issues. Mater. Sci. Eng. A 273–275, 58–66. http://dx.doi.org/10.1016/S0921-5093(99)00289-0
Blondé, R., Jimenez-Melero, E., Zhao, L., Wright, J.P., Bru.ck, E., Van der Zwaag, S., Van Dijik, N.H. (2014). Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading. Mater. Sci. Eng. A 618, 280–287. http://dx.doi.org/10.1016/j.msea.2014.09.008
Caballero, F.G., Santofimia, M.J., García-Mateo, C., Chao, J., García de Andrés, C. (2009). Theoretical design and advanced microstructure in super high strength steels. Mat. Design. 30 (6), 2077–2083. http://dx.doi.org/10.1016/j.matdes.2008.08.042
Caballero, F.G., Allain, S., Cornide, J., Puerta Velásquez, J.D., García-Mateo, C., Miller, M.K. (2013). Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application. Mat. Design. 49, 667–680. http://dx.doi.org/10.1016/j.matdes.2013.02.046
Cullity, B.D. (1978). Elements of X-ray diffraction, 2nd Edition, Addison-Wesley, Boston. De Diego-Calderón, I., Santofimia, M.J., Molina-Aldareguia, J.M., Monclús, M.A., Sabirov, I. (2014). Deformation behavior of a high strength multiphase steel at macroand micro-scales. Mater. Sci. Eng. A 611, 201–211.
De Knijf, D., Petrov, R., Föjer, C., Kestens, L.A. (2014a). Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel. Mater. Sci. Eng. A 615, 107−115. http://dx.doi.org/10.1016/j.msea.2014.07.054
De Knijf, D., Nguyen-Minh, T., Petrov, R.H., Kestens, I., Jonas, J.J. (2014b). Orientation dependence of the martensite transformation in a quenched and partitioned steel subjected to uniaxial tension. J. Appl. Cryst. 47 (4), 1261–1266. http://dx.doi.org/10.1107/S1600576714011959
De Moor, E., Lacroix, S., Clarke, A.J., Penning, J., Speer, J.G. (2008). Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels. Metall. Mater. Trans. A 39 (11), 2586–2595. http://dx.doi.org/10.1007/s11661-008-9609-z
De Moor, E., Gibbs, P.J., Speer, J.G., Matlock, D.K., Schroth, J.G. (2010). Strategies for Third-Generation Advanced High-Strength Steel Development. AIST Trans. Iron & Steel Technology 7 (11), 133–144.
De Moor, E., Speer, J.G., Matlock, D.K., Swak, J.H., Lee, S.-B. (2011). Effect of Carbon and Manganese on the Quenching and Partitioning Response of CMnSi Steels. ISIJ Int. 51 (1), 137–144. http://dx.doi.org/10.2355/isijinternational.51.137
Ding, R., Tang, D., Zhao, A. (2014). A novel design to enhance the amount of retained austenite and mechanical properties in low-alloyed steel. Scr. Mater. 88, 21–24. http://dx.doi.org/10.1016/j.scriptamat.2014.06.014
Edmonds, D.V., He, K., Rizzo, F.C., De Cooman, B., Matlock, D., Speer, J.G. (2006). Quenching and partitioning martensite- A novel steel heat treatment. Mater. Sci. Eng. A 438–440, 25–34. http://dx.doi.org/10.1016/j.msea.2006.02.133
Furnemont, Q., Kempf, M., Jacques, P.J., Göken, M., Delannay, F. (2002). On the measurement of the nanohardness of the constitutive phases of TRIP-assisted multiphase steels. Mater. Sci. Eng. A 328 (1–2), 26–32. http://dx.doi.org/10.1016/S0921-5093(01)01689-6
García-Mateo, C., Caballero, F.G., Soumail, T., Kunt, M., Cornide, J., Smanio, V., Elvira, R. (2012). Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon. Mater. Sci. Eng. A 549, 185–192. http://dx.doi.org/10.1016/j.msea.2012.04.031
Gutiérrez, D., Pérez, Ll., Lara, A., Casellas, D., Prado, J.M. (2013). Evaluación del trabajo esencial de fractura en chapa de un acero de alta resistencia de fase dual. Rev. Metal. 49 (1), 45–54. http://dx.doi.org/10.3989/revmetalm.1213
Han, Q., Kang, Y., Hodgson, P., Stanford, N. (2013). Quantitative measurement of strain partitioning and slip systems in a dual-phase steel. Scr. Mater. 69 (1), 13–16. http://dx.doi.org/10.1016/j.scriptamat.2013.03.021
Jacques, P.J., Delannay, F., Ladrière, J. (2001a). On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall. Mat. Trans. A 32 (11), 2759–2768. http://dx.doi.org/10.1007/s11661-001-1027-4
Jacques, P., Furnemont, Q., Pardoen, T. Delannay, F. (2001b). On the role of martensitic transformation on damage and cracking resistance in trip-assisted multiphase steels. Acta Mater. 49 (1), 139–152. http://dx.doi.org/10.1016/S1359-6454(00)00215-9
Jimenez-Melero, E., van Dijk, N.H., Zhao, L., Sietsma, J., Offerman, S.E., Wright, J.P., van der Zwaag, S. (2007). Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels. Acta Mater. 55 (20), 6713–6723. http://dx.doi.org/10.1016/j.actamat.2007.08.040
Joo, M.S., Suh, D.-W., Bae, J.H., Sánchez Mouri-o, N., Petrov, R., Kestens, L., Bhadeshia, H.K.D.H. (2012). Experiments to separate the effect of texture on anisotropy of pipeline steel. Mater. Sci. Eng. A 556, 601–606. http://dx.doi.org/10.1016/j.msea.2012.07.033
Kaijalainen, A.J., Suikkanen, P.P., Limnell, T.J., Karjalainen, L.P., Kömi, J.I., Porter, D.A. (2013). Effect of austenite grain structure on the strength and toughness of direct-quenched martensite. J. Alloy. Compd. 577 (Supplement 1), S642−S648. http://dx.doi.org/10.1016/j.jallcom.2012.03.030
Kapp, M., Hebesberger, T., Kolednik, O. (2011). A micro-level strain analysis of a high-strength dual-phase steel. Int. J. Mater. Res. 102 (6), 687–691. http://dx.doi.org/10.3139/146.110522
Kolednik, O., Unterweger, K. (2008). The ductility of metal matrix composites - Relation to local deformation behavior and damage evolution. Eng. Fract. Mech. 75 (12), 3663–3676. http://dx.doi.org/10.1016/j.engfracmech.2007.08.011
Paravicini Bagliani, E., Santofimia, M.J., Zhao, L., Sietsma, J., Anelli, E. (2013). Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel. Mater. Sci. Eng. A 559, 486–495. http://dx.doi.org/10.1016/j.msea.2012.08.130
Petrov, R., Kestens, L., Wasilkowska, A., Houbaert, Y. (2007). Microstructure and texture of a lightly deformed TRIPassisted steel characterized by means of the EBSD technique. Mater. Sci. Eng. A 447 (1–2), 285–297. http://dx.doi.org/10.1016/j.msea.2006.10.023
Prawoto, Y., Jasmawati, N., Sumeru, K. (2012). Effect of Prior Austenite Grain Size on the Morphology and Mechanical Properties of Martensite in Medium Carbon Steel. J. Mater. Sci. Tech. 28 (5), 461–466. http://dx.doi.org/10.1016/S1005-0302(12)60083-8
Rodríguez, E., Suárez, K., Amorer, L., Silva, J. (2014). Caracterización dinámica de los cambios microestructurales en barras de aceros dúplex SAF 2205 utilizando la dimensión de información. Rev. Metal. 50 (1), e007. http://dx.doi.org/10.3989/revmetalm.007
Santofimia, M.J., Zhao, L., Petrov, R., Sietsma, J. (2008). Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel. Mater. Charact. 59 (12), 1758–1764. http://dx.doi.org/10.1016/j.matchar.2008.04.004
Santofimia, M.J., Zhao, L., Sietsma, J. (2011a). Overview of Mechanisms Involved During the Quenching and Partitioning Process in Steels. Metall. Mater. Trans. A 42 (12), 3620–3626. http://dx.doi.org/10.1007/s11661-011-0706-z
Santofimia, M.J., Zhao, L., Petrov, R., Kwakermaak, C., Sloof, W.G., Sietsma, J. (2011b). Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel. Acta Mater. 59 (15), 6059–6068. http://dx.doi.org/10.1016/j.actamat.2011.06.014
Schneider, C.A., Rasband, W.S., Eliceiri, K. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Method. 9, 671–675. http://dx.doi.org/10.1038/nmeth.2089
Schulz-Beenken, A.S. (1997). Martensite in Steels : its significance, recent developments and trends. J. Phys. IV France 07 (C5), C5-359-C5-366. http://dx.doi.org/10.1051/jp4:1997557
Speer, J.G., Matlock, D.K. (2002). Recent developments in lowcarbon sheet steels. JOM 54 (7), 19–24. http://dx.doi.org/10.1007/BF02700981
Speer, J., Matlock, D.K., De Cooman, B.C., Schroth, J.G. (2003). Carbon partitioning into austenite after martensite transformation. Acta Mater. 51 (9), 2611–2622. http://dx.doi.org/10.1016/S1359-6454(03)00059-4
Speer, J.G., Rizzo, F.C., Matlock, D.K., Edmonds, D.V. (2005). The "Quenching and Partitioning Process": Background and Recent Progress. Mater. Res. 8 (4), 417–423. http://dx.doi.org/10.1590/s1516-14392005000400010
Speer, J.G., de Moor, E., Clarke, A.J. (2014). Critical assessment: quenching and partitioning. Mater. Sci. Tech. 31 (1), 3–9. http://dx.doi.org/10.1179/1743284714Y.0000000628
Sun, J.S., Yu, H., Wang, S., Fan, Y. (2014). Study of microstructural evolution, microstructure-mechanical properties correlation and collaborative deformation-transformation behavior of quenching and partitioning (Q&P) steel. Mater. Sci. Eng. A 596, 89–97. http://dx.doi.org/10.1016/j.msea.2013.12.054
Tan, X., Xu, Y., Yang, X., Wu, D. (2014a). Microstructure– properties relationship in a one-step quenched and partitioned steel. Mater. Sci. Eng. A 589, 101–111. http://dx.doi.org/10.1016/j.msea.2013.09.063
Tan, X., Xu, Y., Yang, X., Liu, Z., Wu, D. (2014b). Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel. Mater. Sci. Eng. A 594, 149–160. http://dx.doi.org/10.1016/j.msea.2013.11.064
Tirumalasetty, G.K., van Huis, M.A., Kwakemaak, C., Sietsma, J., Soof, W.G., Zandbergen, H.W. (2012). Deformationinduced austenite grain rotation and transformation in TRIP-assisted steel. Acta Mater. 60 (3), 1311–1321. http://dx.doi.org/10.1016/j.actamat.2011.11.026
van Dijk, N.H., Butt, A.M., Zhao, L., Sietsma, J., Offerman, S.E., Wright, J.P., van der Zwaag, S. (2005). Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater. 53 (20), 5439–5447. http://dx.doi.org/10.1016/j.actamat.2005.08.017
Xie, Z.J., Ren, Y.Q., Zhou, W.H., Yang, J.R., Shang, C.J., Misra, R.D.K. (2014). Stability of retained austenite in multiphase microstructure during austempering and its effect on the ductility of a low carbon steel. Mater. Sci. Eng. A 603, 69–75. http://dx.doi.org/10.1016/j.msea.2014.02.059
Xiong, X.C., Chen, B., Huang, M.X., Wang, J.F., Wang, L. (2013). The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scr. Mater. 68 (5), 321–324. http://dx.doi.org/10.1016/j.scriptamat.2012.11.003
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.