Efecto de los parámetros de procesado en el desarrollo microestructural y en las propiedades mecánicas en aceros Q&P

Autores/as

  • Irene De Diego-Calderón IMDEA Materials Institute
  • Dorien De Knijf Department of Materials Science and Engineering, Gent University
  • Jon M. Molina-Aldareguia IMDEA Materials Institute
  • Ilchat Sabirov IMDEA Materials Institute
  • Cecilia Föjer Arcelor Mittal Global R&D Gent
  • Roumen Petrov Department of Materials Science and Engineering, Gent University - Department of Materials Science and Engineering, Delft University of Technology

DOI:

https://doi.org/10.3989/revmetalm.035

Palabras clave:

Aceros, Austenita retenida, Deformación, Propiedades mecánicas, “Quenching and partinioning”, Transformación de fase

Resumen


Con el objetivo de evaluar el efecto de los parámetros de procesado en un acero con una composición nominal de 0,25C–1,5Si–3Mn–0,023Al (% masa), éste ha sido sometido a un tratamiento térmico denominado “Quenching and Partitioning” (Q&P), en el que se han variado la temperatura de “quenching”, la temperatura de “partitioning” y el tiempo de “partitioning”. Como resultado se ha obtenido una microestructura multifásica, la cual ha sido analizada en detalle utilizando difracción de rayos-X (XRD) y de electrones retrodispersados (EBSD). Asimismo, se han medido las propiedades mecánicas de los aceros Q&P mediante ensayos de tracción. La deformación plástica de los aceros Q&P a nivel micrométrico ha sido estudiada mediante ensayos “in situ” en el microscopio electrónico de barrido y la posterior aplicación de la técnica de correlación digital de imágenes. Se ha determinado el efecto de los parámetros de procesado en la microestructura (composición de fases, tamaño y fracción en volumen de los distintos micro constituyentes, textura y contenido en carbono en la austenita retenida). Una vez se han relacionado las propiedades mecánicas, la deformación plástica a nivel micrométrico y la microestructura, se concluye que la partición de la deformación entre fases depende en gran medida de la propia microestructura del acero Q&P, que a su vez puede ser ajustada a través de la manipulación de los parámetros de procesado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahn, T.H., Oh, C.S., Kim, D.H., Oh, K.H., Bei, H., George, E.P., Han, H.N. (2010). Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation. Scr. Mater. 63 (5), 540–543. http://dx.doi.org/10.1016/j.scriptamat.2010.05.024

Bhadeshia, H.K.D.H. (1999). The bainite transformation: unresolved issues. Mater. Sci. Eng. A 273–275, 58–66. http://dx.doi.org/10.1016/S0921-5093(99)00289-0

Blondé, R., Jimenez-Melero, E., Zhao, L., Wright, J.P., Bru.ck, E., Van der Zwaag, S., Van Dijik, N.H. (2014). Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading. Mater. Sci. Eng. A 618, 280–287. http://dx.doi.org/10.1016/j.msea.2014.09.008

Caballero, F.G., Santofimia, M.J., García-Mateo, C., Chao, J., García de Andrés, C. (2009). Theoretical design and advanced microstructure in super high strength steels. Mat. Design. 30 (6), 2077–2083. http://dx.doi.org/10.1016/j.matdes.2008.08.042

Caballero, F.G., Allain, S., Cornide, J., Puerta Velásquez, J.D., García-Mateo, C., Miller, M.K. (2013). Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application. Mat. Design. 49, 667–680. http://dx.doi.org/10.1016/j.matdes.2013.02.046

Cullity, B.D. (1978). Elements of X-ray diffraction, 2nd Edition, Addison-Wesley, Boston. De Diego-Calderón, I., Santofimia, M.J., Molina-Aldareguia, J.M., Monclús, M.A., Sabirov, I. (2014). Deformation behavior of a high strength multiphase steel at macroand micro-scales. Mater. Sci. Eng. A 611, 201–211.

De Knijf, D., Petrov, R., Föjer, C., Kestens, L.A. (2014a). Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel. Mater. Sci. Eng. A 615, 107−115. http://dx.doi.org/10.1016/j.msea.2014.07.054

De Knijf, D., Nguyen-Minh, T., Petrov, R.H., Kestens, I., Jonas, J.J. (2014b). Orientation dependence of the martensite transformation in a quenched and partitioned steel subjected to uniaxial tension. J. Appl. Cryst. 47 (4), 1261–1266. http://dx.doi.org/10.1107/S1600576714011959

De Moor, E., Lacroix, S., Clarke, A.J., Penning, J., Speer, J.G. (2008). Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels. Metall. Mater. Trans. A 39 (11), 2586–2595. http://dx.doi.org/10.1007/s11661-008-9609-z

De Moor, E., Gibbs, P.J., Speer, J.G., Matlock, D.K., Schroth, J.G. (2010). Strategies for Third-Generation Advanced High-Strength Steel Development. AIST Trans. Iron & Steel Technology 7 (11), 133–144.

De Moor, E., Speer, J.G., Matlock, D.K., Swak, J.H., Lee, S.-B. (2011). Effect of Carbon and Manganese on the Quenching and Partitioning Response of CMnSi Steels. ISIJ Int. 51 (1), 137–144. http://dx.doi.org/10.2355/isijinternational.51.137

Ding, R., Tang, D., Zhao, A. (2014). A novel design to enhance the amount of retained austenite and mechanical properties in low-alloyed steel. Scr. Mater. 88, 21–24. http://dx.doi.org/10.1016/j.scriptamat.2014.06.014

Edmonds, D.V., He, K., Rizzo, F.C., De Cooman, B., Matlock, D., Speer, J.G. (2006). Quenching and partitioning martensite- A novel steel heat treatment. Mater. Sci. Eng. A 438–440, 25–34. http://dx.doi.org/10.1016/j.msea.2006.02.133

Furnemont, Q., Kempf, M., Jacques, P.J., Göken, M., Delannay, F. (2002). On the measurement of the nanohardness of the constitutive phases of TRIP-assisted multiphase steels. Mater. Sci. Eng. A 328 (1–2), 26–32. http://dx.doi.org/10.1016/S0921-5093(01)01689-6

García-Mateo, C., Caballero, F.G., Soumail, T., Kunt, M., Cornide, J., Smanio, V., Elvira, R. (2012). Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon. Mater. Sci. Eng. A 549, 185–192. http://dx.doi.org/10.1016/j.msea.2012.04.031

Gutiérrez, D., Pérez, Ll., Lara, A., Casellas, D., Prado, J.M. (2013). Evaluación del trabajo esencial de fractura en chapa de un acero de alta resistencia de fase dual. Rev. Metal. 49 (1), 45–54. http://dx.doi.org/10.3989/revmetalm.1213

Han, Q., Kang, Y., Hodgson, P., Stanford, N. (2013). Quantitative measurement of strain partitioning and slip systems in a dual-phase steel. Scr. Mater. 69 (1), 13–16. http://dx.doi.org/10.1016/j.scriptamat.2013.03.021

Jacques, P.J., Delannay, F., Ladrière, J. (2001a). On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall. Mat. Trans. A 32 (11), 2759–2768. http://dx.doi.org/10.1007/s11661-001-1027-4

Jacques, P., Furnemont, Q., Pardoen, T. Delannay, F. (2001b). On the role of martensitic transformation on damage and cracking resistance in trip-assisted multiphase steels. Acta Mater. 49 (1), 139–152. http://dx.doi.org/10.1016/S1359-6454(00)00215-9

Jimenez-Melero, E., van Dijk, N.H., Zhao, L., Sietsma, J., Offerman, S.E., Wright, J.P., van der Zwaag, S. (2007). Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels. Acta Mater. 55 (20), 6713–6723. http://dx.doi.org/10.1016/j.actamat.2007.08.040

Joo, M.S., Suh, D.-W., Bae, J.H., Sánchez Mouri-o, N., Petrov, R., Kestens, L., Bhadeshia, H.K.D.H. (2012). Experiments to separate the effect of texture on anisotropy of pipeline steel. Mater. Sci. Eng. A 556, 601–606. http://dx.doi.org/10.1016/j.msea.2012.07.033

Kaijalainen, A.J., Suikkanen, P.P., Limnell, T.J., Karjalainen, L.P., Kömi, J.I., Porter, D.A. (2013). Effect of austenite grain structure on the strength and toughness of direct-quenched martensite. J. Alloy. Compd. 577 (Supplement 1), S642−S648. http://dx.doi.org/10.1016/j.jallcom.2012.03.030

Kapp, M., Hebesberger, T., Kolednik, O. (2011). A micro-level strain analysis of a high-strength dual-phase steel. Int. J. Mater. Res. 102 (6), 687–691. http://dx.doi.org/10.3139/146.110522

Kolednik, O., Unterweger, K. (2008). The ductility of metal matrix composites - Relation to local deformation behavior and damage evolution. Eng. Fract. Mech. 75 (12), 3663–3676. http://dx.doi.org/10.1016/j.engfracmech.2007.08.011

Paravicini Bagliani, E., Santofimia, M.J., Zhao, L., Sietsma, J., Anelli, E. (2013). Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel. Mater. Sci. Eng. A 559, 486–495. http://dx.doi.org/10.1016/j.msea.2012.08.130

Petrov, R., Kestens, L., Wasilkowska, A., Houbaert, Y. (2007). Microstructure and texture of a lightly deformed TRIPassisted steel characterized by means of the EBSD technique. Mater. Sci. Eng. A 447 (1–2), 285–297. http://dx.doi.org/10.1016/j.msea.2006.10.023

Prawoto, Y., Jasmawati, N., Sumeru, K. (2012). Effect of Prior Austenite Grain Size on the Morphology and Mechanical Properties of Martensite in Medium Carbon Steel. J. Mater. Sci. Tech. 28 (5), 461–466. http://dx.doi.org/10.1016/S1005-0302(12)60083-8

Rodríguez, E., Suárez, K., Amorer, L., Silva, J. (2014). Caracterización dinámica de los cambios microestructurales en barras de aceros dúplex SAF 2205 utilizando la dimensión de información. Rev. Metal. 50 (1), e007. http://dx.doi.org/10.3989/revmetalm.007

Santofimia, M.J., Zhao, L., Petrov, R., Sietsma, J. (2008). Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel. Mater. Charact. 59 (12), 1758–1764. http://dx.doi.org/10.1016/j.matchar.2008.04.004

Santofimia, M.J., Zhao, L., Sietsma, J. (2011a). Overview of Mechanisms Involved During the Quenching and Partitioning Process in Steels. Metall. Mater. Trans. A 42 (12), 3620–3626. http://dx.doi.org/10.1007/s11661-011-0706-z

Santofimia, M.J., Zhao, L., Petrov, R., Kwakermaak, C., Sloof, W.G., Sietsma, J. (2011b). Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel. Acta Mater. 59 (15), 6059–6068. http://dx.doi.org/10.1016/j.actamat.2011.06.014

Schneider, C.A., Rasband, W.S., Eliceiri, K. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Method. 9, 671–675. http://dx.doi.org/10.1038/nmeth.2089

Schulz-Beenken, A.S. (1997). Martensite in Steels : its significance, recent developments and trends. J. Phys. IV France 07 (C5), C5-359-C5-366. http://dx.doi.org/10.1051/jp4:1997557

Speer, J.G., Matlock, D.K. (2002). Recent developments in lowcarbon sheet steels. JOM 54 (7), 19–24. http://dx.doi.org/10.1007/BF02700981

Speer, J., Matlock, D.K., De Cooman, B.C., Schroth, J.G. (2003). Carbon partitioning into austenite after martensite transformation. Acta Mater. 51 (9), 2611–2622. http://dx.doi.org/10.1016/S1359-6454(03)00059-4

Speer, J.G., Rizzo, F.C., Matlock, D.K., Edmonds, D.V. (2005). The "Quenching and Partitioning Process": Background and Recent Progress. Mater. Res. 8 (4), 417–423. http://dx.doi.org/10.1590/s1516-14392005000400010

Speer, J.G., de Moor, E., Clarke, A.J. (2014). Critical assessment: quenching and partitioning. Mater. Sci. Tech. 31 (1), 3–9. http://dx.doi.org/10.1179/1743284714Y.0000000628

Sun, J.S., Yu, H., Wang, S., Fan, Y. (2014). Study of microstructural evolution, microstructure-mechanical properties correlation and collaborative deformation-transformation behavior of quenching and partitioning (Q&P) steel. Mater. Sci. Eng. A 596, 89–97. http://dx.doi.org/10.1016/j.msea.2013.12.054

Tan, X., Xu, Y., Yang, X., Wu, D. (2014a). Microstructure– properties relationship in a one-step quenched and partitioned steel. Mater. Sci. Eng. A 589, 101–111. http://dx.doi.org/10.1016/j.msea.2013.09.063

Tan, X., Xu, Y., Yang, X., Liu, Z., Wu, D. (2014b). Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel. Mater. Sci. Eng. A 594, 149–160. http://dx.doi.org/10.1016/j.msea.2013.11.064

Tirumalasetty, G.K., van Huis, M.A., Kwakemaak, C., Sietsma, J., Soof, W.G., Zandbergen, H.W. (2012). Deformationinduced austenite grain rotation and transformation in TRIP-assisted steel. Acta Mater. 60 (3), 1311–1321. http://dx.doi.org/10.1016/j.actamat.2011.11.026

van Dijk, N.H., Butt, A.M., Zhao, L., Sietsma, J., Offerman, S.E., Wright, J.P., van der Zwaag, S. (2005). Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater. 53 (20), 5439–5447. http://dx.doi.org/10.1016/j.actamat.2005.08.017

Xie, Z.J., Ren, Y.Q., Zhou, W.H., Yang, J.R., Shang, C.J., Misra, R.D.K. (2014). Stability of retained austenite in multiphase microstructure during austempering and its effect on the ductility of a low carbon steel. Mater. Sci. Eng. A 603, 69–75. http://dx.doi.org/10.1016/j.msea.2014.02.059

Xiong, X.C., Chen, B., Huang, M.X., Wang, J.F., Wang, L. (2013). The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scr. Mater. 68 (5), 321–324. http://dx.doi.org/10.1016/j.scriptamat.2012.11.003

Publicado

2015-03-30

Cómo citar

De Diego-Calderón, I., De Knijf, D., Molina-Aldareguia, J. M., Sabirov, I., Föjer, C., & Petrov, R. (2015). Efecto de los parámetros de procesado en el desarrollo microestructural y en las propiedades mecánicas en aceros Q&P. Revista De Metalurgia, 51(1), e035. https://doi.org/10.3989/revmetalm.035

Número

Sección

Artículos