Revista de Metalurgia, Vol 53, No 2 (2017)

Biolixiviación de mineral cuarzo por Acidithiobacillus ferrooxidans en reactor de columna por gravedad

Ronald Huarachi-Olivera, Alex Dueñas-Gonza, Ursulo Yapo, Moisés Almanza, Dennys Manuel, Antonio Lazarte-Rivera, Gelbert Mogrovejo-Medina, Homar Taco-Cervantes, Mario Esparza

DOI: http://dx.doi.org/10.3989/revmetalm.096

Resumen


La biolixiviación es el proceso mediante el cual se extrae cobre de minerales sulfuros de baja ley usando microorganismos. La lixiviación química se aplica preferentemente para extraer cobre de minerales oxidados o mixtos, pero no existe información de aplicación de microorganismos en esta operación. En tal sentido, en la presente investigación se trabajó con reactores en columna por gravedad para procesos de lixiviación química, con cultivos bacterianos de Acidithiobacillus ferrooxidans en medio 9K y mineral de cuarzo que contenía cuprita y pirita, con diferentes tamaños de partícula. Se encontró que después de 24 días de lixiviación química se recuperó el 86% de cobre cuando se incluyeron bacterias, mientras que sin ellas sólo se recuperó el 54%. La mayor recuperación de cobre en ambos procesos se obtuvo en el siguiente orden de acuerdo al tamaño de partícula: 9,5 mm > 12,5 mm > 19,05 mm. Así, la aplicación de células bacterianas a procesos lixiviación química con minerales oxidados de cobre que incluyen cuarzo y células de A. ferrooxidans, aumenta la recuperación de cobre cuanto menor sea el tamaño de partícula del mineral. Esta tecnología puede ser utilizada por empresas mineras que aún siguen realizando lixiviación química convencional y se puede incluir en la operación la adición de microorganismos para aumentar la recuperación de cobre de minerales sulfurados incluyendo cuarzo.

Palabras clave


Biolixiviación; Cuarzo; Cuprita; Lixiviación; Pirita

Texto completo:


HTML PDF XML

Referencias


Bartlett, R. (2013). Solution mining, leaching and fluid recovery of materials, Second Ed., Taylor & Francis, p. 470.

Bustos, S., Casas, J.M., Gonzalez, C. (2004). Acid requirements in bacterial heap leaching of copper sulphide ores. Hydro-sulphides, 187–196.

Dong, Y.B., Lin, H., Zhou, S., Xu, X., Zhang, Y. (2013). Effects of quartz addition on chalcopyrite bioleaching in shaking flasks. Miner. Eng. 46–47, 177–179.

Fagan, M.A., Sederman, A.J., Harrison, S.T.L., Johns, M.L. (2013). Phase distribution identification in the column leaching of low grade ores using MRI. Miner. Eng. 48, 94–99.

Fowler, T.A, Crundwell, F.K. (1998). Leaching of Zinc Sulfide by Thiobacillus ferrooxidans. experiments with a controlled redox potential indicate no direct bacterial mechanism. Appl. Environ. Microbiol. 64 (10), 3570-3575.

Franzmann, P., Haddad, C., Hawkes, R., Robertson, W., Plumb, J. (2005). Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: application of the Ratkowsky equation. Miner. Eng. 18 (13-14), 1304–1314.

Hariprasad, D., Mohapatra, M., Anand, S. (2013). Sulphuric acid leaching of low/medium grade managanese ores using a novel nitrogeneous reductant-NH3NH2HSO4. J. Min. Metall. B 49 (1), 97–106.

Hedrich, S., Guézennec, A. G., Charron, M., Schippers, A., Joulian, C. (2016). Quantitative monitoring of microbial species during bioleaching of a copper concentrate. Frontiers in Microbiology, 7.

Kathryn, W., Hannele, A., Barrie, J.D. (2008). Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Biotechnol. Bioeng. 101 (4), 739–750.

Kodali, P., Dhawan, N., Depci, T., Lin, C.L., Mille, J.D. (2011). Particle damage and exposure analysis in HPGR crushing of selected copper ores for column leaching. Miner. Eng. 24 (13), 1478–1487.

Leduc, L.G., Ferroni, G.D. (1994). The chemolitotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 14 (2), 103–119.

Mo, X.L., Lin, H., Dong, Y.B., Xu, C.Y. (2011). Effect of quartz on bioleaching of chalcopyrite. J. Univ. Sci. Technol. Beijing 33 (6), 682–687.

Mohapatra, B.K., Singh, S., Sukla, L.B., Rao, K.S., Mishra, B.K. (2012). Study on surface alteration behavior during column bioleaching. Miner. Process. Extr. Metall. Rev. 33 (6), 374–390.

Panda, S., Sanjay, K., Sukla, L.B., Pradhan, N., Subbaiah, T., Mishra, B.K., Prasad, M.S.R., Ray, S.K. (2012). Insights into heap bioleaching of low grade chalcopyrite ores -A pilot scale study. Hydrometallurgy 125-126, 157–165.

Patel, B.C., Tipre, D.R., Dave, S.R. (2012). Development of Leptospirillum ferriphilum dominated consortium for ferric iron regeneration and metal bioleaching under extreme stresses. Bioresour. Technol. 118, 483–489.

Patel, B.C., Sinha, M.K., Tipre, D.R., Pillai, A., Dave, S.R. (2014). A novel biphasic leaching approach for the recovery of Cu and Zn from polymetallic bulk concentrate. Bioresour. Technol. 157, 310–315.

Rao, K.S., Mishra, A., Pradhan, D., Chaudhury, G.R., Mohapatra, B.K., Das, T., Bihari Sukla, L.B., Mishra, B.K. (2008). Percolation bacterial leaching of low-grade chalcopyrite using acidophilic microorganisms. Korean J. Chem. Eng. 25 (3), 524–530.

Rohwerder, T., Gehrke, T., Kinzler, K., Sand, W. (2003). Bioleaching review Part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 63 (3), 239–248.

Sánchez, J.R.B., Bello, R.M. (2009). Traducción y censura: el manual de química de Jean-Antoine Chaptal (1756-1832). Cuadernos del Instituto de Historia de la Lengua, Ed. Cilengua, España, pp. 27–61.

Schippers, A., Sand, W. (1999). Bacterial leaching of metal sul fides Proceeds by two indirect mechanisms via Thiosulphate or via Polysulphides and sulfur. Appl. Environ. Microbiol. 65 (1), 319–321.

Schnell, H.A. (1997). Bioleaching of copper. In Biomining: Theory, Microbes and Industrial Processes. Eds. D.E. Rawling, Springer Verlag, Berlin, pp. 21-43.

Silverman, M.P. (1967). Mechanism of bacterial pyrite oxidation. J. Bacteriol. 94 (4), 1046-1051.

Styriaková, I., Bhatti, T.M., Bigham, J.M., Styriak, I., Vuorinen, A., Tuovinen, O.H. (2004). Weathering of phlogopite by Bacillus cereus and Acidithiobacillus ferrooxidans. Can. J. Microbiol. 50 (3), 213–219.

Tipre, D.R., Dave, S.R. (2004). Bioleaching process for Cu-Pb-Zn bulk concentrate at high pulp density. Hydrometallurgy. 75 (1-4), 37–43.

Vogel, A.I. (1961). Text-book of quantitative inorganic analysis, including elementary instrumental analysis, Ed. John Wiley & Sons, USA.

Wang, J., Qin, W.Q., Zhang, Y.S., Yang, C.R., Zhang, J.W., Nai, S.S., Qiu, G.Z. (2008). Bacterial leaching of chalcopyrite and bornite with native bioleaching microorganism. Trans. Nonferrous Met. Soc. China 18 (6), 1468–1472.

Wu, A.X., Yin, S.H., Wang, H.j., Qin, W.Q., Qin, G.Z. (2009). Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation. Bioresour. Technol. 100 (6), 1931–1936.

Xiaolan, M., Hai, L., Jiankang, W., Chengyan, X. (2013). Effect of Gangue Minerals on Chalcopyrite Bioleaching. Chinese Journal of Rare Metals 3, 019.

Yu, R., Zhong, D., Miao, L., Wu, F., Qiu, G., Gu, G. (2011). Relationship and effect of redox potential, jarosites and extracellular polymeric substances in bioleaching chalcopyrite by Acidithiobacillus ferrooxidans. Trans. Nonferrous Met. Soc. China 21 (7): 1634?1640.

Zhao, H., Wang, J., Qin, W., Hu, M., Zhu, S., Qiu, G. (2015). Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms. Miner. Eng. 71, 159–169.

.

Zhou, H.B., Zeng, W.M., Yang, Z.F., Xie, Y.J., Qiu, G.Z. (2009). Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor. Bioresour. Tech. 100 (2), 515–520.




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Este obra está bajo una licencia Creative Commons Reconocimiento 3.0 España (CC-by).


Contacte con la revista revista@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es