Revista de Metalurgia, Vol 54, No 4 (2018)

Efectos de la irradiación solar concentrada en las transformaciones alotrópicas del acero inoxidable AISI 316


https://doi.org/10.3989/revmetalm.133

Omar Álvarez
Instituto de Energías Renovables (IER). Universidad Nacional Autónoma de México (UNAM), México
orcid http://orcid.org/0000-0002-2414-2471

Armando Rojas
Centro de Ingeniería Avanzada, Dpto. de Termofluidos, Facultad de Ingeniería, Universidad Nacional Autónoma de México (UNAM), México
orcid http://orcid.org/0000-0003-4989-9371

Arturo Barba
Centro de Ingeniería de Superficies y Acabados (CENISA). Facultad de Ingeniería. Universidad Nacional Autónoma de México (UNAM), México
orcid http://orcid.org/0000-0001-7285-9429

Camilo A. Arancibia
Instituto de Energías Renovables (IER). Universidad Nacional Autónoma de México (UNAM), México
orcid http://orcid.org/0000-0001-6782-0116

Jorge Álvarez
Dpto. de Ingeniería y Arquitectura. Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), México
orcid http://orcid.org/0000-0001-5105-2677

Dulce V. Melo
Dpto. de Mecatrónica del Tecnológico de Monterrey. Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), México
orcid http://orcid.org/0000-0001-7488-7677

Carlos E. Arreola
Instituto de Energías Renovables (IER). Universidad Nacional Autónoma de México (UNAM), México
orcid http://orcid.org/0000-0003-4770-8340

Resumen


Se investiga la transformación de fases que pueden ocurrir en un acero austenítico (AISI 316) mediante la demostración de la aparición de ferrita-δ que se obtiene en ciclos iniciales de calentamiento usando irradiación solar concentrada (ISC) a magnitudes necesitadas para obtener temperaturas de operación de sistemas de tipo torre central. Cuatro especímenes de acero inoxidable AISI 316 cortados de una misma pieza, fueron expuestos a ISC en el Horno Solar de Alto Flujo Radiativo de la Universidad Nacional Autónoma de México para desarrollar el ciclado térmico. El acero AISI 316 fue seleccionado por ser reportado entre los materiales más baratos usado en receptores de ISC. Pruebas de resistencia a la tensión monotónica demostraron que no existe un efecto relevante del ciclado térmico en las propiedades mecánicas resultantes. Las transformaciones de fase fueron caracterizadas usando microscopía óptica, difracción de rayos X, y microscopía electrónica de barrido con espectroscopía de dispersión de energía de rayos X. La aparición de la fase de ferrita-δ fue la principal diferencia entre los especímenes tratados con ISC y dos especímenes de referencia. La fracción UV de la ISC demostró tener el potencial de lograr estas transformaciones de fase a una temperatura cercana a los 630 °C.

Palabras clave


Acero inoxidable; Austenítico; Ferrita-δ obtenida; Irradiación solar concentrada; Transformaciones alotrópicas

Texto completo:


HTML PDF XML

Referencias


Augsburger, G., Favrat, D. (2013). Modelling of the receiver transient flux distribution due to cloud passages on a solar tower thermal power plant. Sol. Energy 87, 42–52. https://doi.org/10.1016/j.solener.2012.10.010

Bechtoldt, C.J., Vacher, H.C. (1957). Phase-Diagram Study of Alloys in the Iron-Chromium-Molybdenum-Nickel System. J. Res. Nat. Bur. Stand. 58 (1), 7–19. https://doi.org/10.6028/jres.058.002

Boerema, N., Morrison, G., Taylor, R., Rosengarten, G. (2012). Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems. Sol. Energy 86 (9), 2293–2305. https://doi.org/10.1016/j.solener.2012.05.001

Boubault, A., Claudet, B., Faugeroux, O., Olalde, G., Serra, J. (2012). A numerical thermal approach to study the accelerated aging of a solar absorber material. Sol. Energy 86 (11), 3153–3167. https://doi.org/10.1016/j.solener.2012.08.007

Boubault, A., Claudet, B., Faugeroux, O., Olalde, G. (2014). Aging of solar absorber materials under highly concentrated solar fluxes. Sol. Energ. Mat. Sol. C. 123, 211–219. https://doi.org/10.1016/j.solmat.2014.01.010

Brooks, J.A., Baskes, M.I., Greulich, F.A. (1991). Solidification modeling and solid-state transformations in high-energy density stainless steel welds. Metall. Trans. A 22 (4), 915–926. https://doi.org/10.1007/BF02659001

Dieter, G.E. (1986). Mechanical behavior under tensile and compressive loads. ASM Handbook, Vol. 8, pp. 99–108.

EI Nayal, G., Beech, J. (1986). Relationship betvveen composition, impurity content, cooling rate, and solidification in austenitic stainless steels. Mater. Sci. Technol. 2 (6), 603–610. https://doi.org/10.1179/mst.1986.2.6.603

Fine, M.E., Chung, Y. (1996). ASM Handbook, Vol. 19, Fatigue and Fracture. ASM International, USA, pp. 148–149.

Herranz, G., Rodríguez, G.P. (2010). Uses of Concentrated Solar Energy in Materials Science. In Solar Energy. Edited by R. Rugescu, IntechOpen, p. 432. https://doi.org/10.5772/8067

Hsieh, C.C., Lin, D.Y., Chen, M.C., Wu, W. (2008). Precipitation and strengthening behavior of massive ?-ferrite in dissimilar stainless steels during massive phase transformation. Mat. Sci. Eng. A-Struct. 477 (1–2), 328–333. https://doi.org/10.1016/j.msea.2007.05.037

Ho, C.K., Iverson, B.D. (2014). Review of high-temperature central receiver designs for concentrating solar power. Renew. Sust. Energ. Rev. 29, 835–846. https://doi.org/10.1016/j.rser.2013.08.099

Jianfeng, L., Jing, D., Jianping, Y. (2010). Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation. Sol. Energy 84 (11), 1879–1887. https://doi.org/10.1016/j.solener.2009.11.015

Klob?ar, D., Tu?ek, J., Taljat, B. (2008). Thermal fatigue of materials for die-casting tooling. Mat. Sci. Eng. A-Struct. 472 (1–2), 198–207. https://doi.org/10.1016/j.msea.2007.03.025

Padilha, A.F., Tavares, C.F., Martorano M.A. (2013). Delta Ferrite Formation in Austenitic Stainless Steel Castings. Mater. Sci. Forum 730–732, 733–738.

Prasad, K., Kumar, V. (2013). Temperature gradients in flat thermomechanical fatigue specimens. Appl. Therm. Eng. 59 (1–2), 131–133. https://doi.org/10.1016/j.applthermaleng.2013.05.002

Riveros-Rosas, D., Herrera-Vázquez, J., Pérez-Rábago, C.A., Arancibia-Bulnes, C.A., Vázquez-Montiel, S., Sánchez-González, M., Granados-Agustín, F., Jaramillo, O.A., Estrada, C.A. (2010). Optical design of a high radiative flux solar furnace for Mexico. Sol. Energy 84 (5), 792–800. https://doi.org/10.1016/j.solener.2010.02.002

Rodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibá-ez, J.A., Acosta-Iborra, A., Santana, D. (2014). Thermal design guidelines of solar power towers. Appl. Therm. Eng. 63 (1), 428–438. https://doi.org/10.1016/j.applthermaleng.2013.11.014

Rojas-Morín, A., Fernández-Reche, J. (2011). Estimate of thermal fatigue lifetime for the INCONEL 625LCF plate while exposed to concentrated solar radiation. Rev. Metal. 47 (2), 112–125. https://doi.org/10.3989/revmetalmadrid.1038

Sibin, K.P., Siju, J., Harish, C.B. (2015). Control of thermal emittance of stainless steel using sputtered tungsten thin films for solar thermal power applications. Sol. Energ. Mat. Sol. C. 133, 1–7. https://doi.org/10.1016/j.solmat.2014.11.002

Saeidi, K., Gao, X., Lofaj, F., Kvetková, L., Shen, Z.J. (2015). Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting. J. Alloy. Compd. 633, 463–469. https://doi.org/10.1016/j.jallcom.2015.01.249

Sokolov, S., Ortel, E., Radnik, J., Kraehnert, R. (2009). Influence of steel composition and pre-treatment conditions on morphology and microstructure of TiO2 mesoporous layers produced by dip coating on steel substrates. Thin Solid Films 518 (1), 27–35. https://doi.org/10.1016/j.tsf.2009.06.009

Vacher, H.C., Bechtoldt, C.J. (1954). Delta Ferrite-Austenite Reactions and the Formation of Carbide, Sigma, and Chi Phases in 18 Chromium-8 Nickel-3.5 Molybdenum Steels. J. Res. Nat. Bur. Stand. 53 (2), 67–76. https://doi.org/10.6028/jres.053.008

Vander Voort, G.F. (1999). Metallography Principles and Practice. ASM International, USA.

Yajiang, L.I., Juan, W., Bing, Z., Tao, F. (2002). XRD and TEM analysis of microstructure in the welding zone of 9Cr-1Mo-V-Nb heat-resisting steel. B. Mater. Sci. 25 (3), 213–217. https://doi.org/10.1007/BF02711156

Zhang, Q., Li, X., Chang, Ch., Wang, Z., Liu, H. (2013). An experimental study: Thermal performance of molten salt cavity Receivers. Appl. Therm. Eng. 50 (1), 334–341. https://doi.org/10.1016/j.applthermaleng.2012.07.028




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revista@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es